ORGANIC CHEMISTRY

AROMATIC COMPOUND

1. Consider the following reaction scheme and choose the correct option(s) for the major products Q, R and S. [JEE(Advanced) 2023]

In the given reaction scheme, P is a phenyl alkyl ether, Q is an aromatic compound; R and S are the major products. [JEE(Advanced) 2023]

$$\mathbf{P} \xrightarrow{\text{HI}} \mathbf{Q} \xrightarrow{(i) \text{ NaOH} \\ (ii) \text{ CO}_2} (iii) \text{ H}_3\text{O}^+} \mathbf{R} \xrightarrow{(i) (\text{CH}_3\text{CO})_2\text{O}} (ii) \text{ H}_3\text{O}^+} \mathbf{S}$$

The correct statement about **S** is

- (A) It primarily inhibits noradrenaline degrading enzymes.
- (B) It inhibits the synthesis of prostaglandin.
- (C) It is a narcotic drug.
- (D) It is *ortho*-acetylbenzoic acid.
- 3. The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option. [JEE(Advanced) 2023]

Acetophenone-

(1)

(P) Etard reaction

- (Q) Gattermann reaction
- (R) Gattermann-Koch reaction
- (S) Rosenmund reduction

(2) Toluene (i) KMnO₄,KOH,
$$\Delta$$

(ii) SOCl₂
(3) Benzene CH₃Cl
anhyd. AlCl₃
(4) Aniline NaNO₂/HCl
273–278 K
(5) Phenol Zn, Δ

- (A) $P \rightarrow 2$; $Q \rightarrow 4$; $R \rightarrow 1$; $S \rightarrow 3$ (C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 4$
- (B) $P \rightarrow 1$; $Q \rightarrow 3$; $R \rightarrow 5$; $S \rightarrow 2$ (D) $P \rightarrow 3$; $Q \rightarrow 4$; $R \rightarrow 5$; $S \rightarrow 2$

List-II

Zn–Hg, HCl

"Paragraph II" for Question No. 4

A trinitro compound, 1, 3,5 tris-(4-nitrophenyl) benzene, on complete reaction with an excess of Sn/HCl gives major product, which on treatment with an excess of NaNO₂/HCl at 0°C provides **P** as the product. **P**, upon treatment with excess of H₂O at room temperature, gives the product **Q**. Bromination of **Q** in aqueous medium furnishes the product **R**. The compound **P** upon treatment with an excess of phenol under basic conditions gives the product **S**.

The molar mass difference between compounds \mathbf{Q} and \mathbf{R} is 474 mol⁻¹ and between compounds \mathbf{P} and \mathbf{S} is 172.5 g mol⁻¹. [JEE(Advanced) 2023]

4. The number of heteroatoms present in one molecule of **R** is _____.

[Use: Molar mass (in g mol⁻¹): H = 1, C = 12, N = 14, O = 16, Br = 80, Cl = 35.5

Atoms other than C and H are considered as heteroatoms]

"Paragraph II" for Question No. 5

A trinitro compound 1, 3, 5 tris-(4-nitrophenyl) benzene, on complete reaction with an excess of Sn/HCl gives major product, which on treatment with an excess of NaNO₂/HCl at 0°C provides **P** as the product. **P**, upon treatment with excess of H₂O at room temperature, gives the product **Q**. Bromination of **Q** in aqueous medium furnishes the product **R**. The compound **P** upon treatment with an excess of phenol under basic conditions gives the product **S**.

The molar mass difference between compounds \mathbf{Q} and \mathbf{R} is 474 mol⁻¹ and between compounds \mathbf{P} and \mathbf{S} is 172.5 g mol⁻¹. [JEE(Advanced) 2023]

5. The total number of carbon atoms and heteroatoms present in one molecule of S is _____. [Use: Molar mass in g mol⁻¹]: H = 1, C = 12, N = 14, O = 16, Br = 80, Cl = 35.5 Atoms other than C and H are considered as heteroatoms

6. If the reaction sequence given below is carried out with 15 moles of acetylene, the amount of the product D formed (in g) is _____.

The yields of **A**, **B**, **C** and **D** are given in parentheses. [Given : Atomic mass of H = 1, C = 12, O = 16, Cl = 35]

[JEE(Advanced) 2022] [JEE(Advanced) 2022]

7. Considering the following reaction sequence, the correct statement(s) is(are)

$$\xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{Zn/Hg, HCl} Q \xrightarrow{SOCl} R$$

$$\xrightarrow{AlCl_3} P \xrightarrow{Zn/Hg, HCl} X \xrightarrow{AlCl_3} AlCl_3$$

$$\xrightarrow{AlCl_3} \xrightarrow{AlCl_3} X \xrightarrow{Zn/Hg, HCl} X$$

- (A) Compounds \mathbf{P} and \mathbf{Q} are carboxylic acids.
- (B) Compound S decolorizes bromine water.
- (C) Compounds P and S react with hydroxylamine to give the corresponding oximes.
- (D) Compound \mathbf{R} reacts with dialkylcadmium to give the corresponding tertiary alcohol.

2

8. Consider the following transformations of a compound **P**.

9. Consider the reaction sequence from P to Q shown below. The overall yield of the major product Q from P is 75%. What is the amount in grams of Q obtained from 9.3 mL of P ?

(Use density of $\mathbf{P} = 1.00 \text{ g mL}^{-1}$, Molar mass of C = 12.0, H = 1.0, O = 16.0 and N = 14.0 g mol^{-1})

[JEE(Advanced) 2020]

10. Choose the correct option(s) for the following reaction sequence

Paragraph for Question No. 11 & 12

The reaction of compound **P** with CH₃MgBr (excess) in $(C_2H_5)_2O$ followed by addition of H₂O gives **Q**, The compound **Q** on treatment with H₂SO₄ at 0°C gives **R**. The reaction of **R** with CH₃COCl in the presence of anhydrous AlCl₃ in CH₂Cl₂ followed by treatment with H₂O produces compounds S. [Et it compounds **P** is ethyl group]

- The reactions, Q to R and S to S, are -
 - (A) Dehydration and Friedel-Crafts acylation
 - (B) Friedel-Crafts alkylation, dehydration and Friedel-Crafts acylation
 - (C) Aromatic sulfonation and Friedel-Crafts acylation
 - (D) Friedel-Crafts alkylation and Fridel-Crafts acylation

4

11.

[JEE(Advanced) 2017]

13. Among the following reaction(s) which gives (give) tert-butyl benzene as the major product is(are)

Paragraph For Q.14 & Q.15

Treatment of compound **O** with $KMnO_4 / H^+$ gave **P**, which on heating with ammonia gave **Q**. The compound **Q** on treatment with $Br_2 / NaOH$ produced **R**. On strong heating, **Q** gave **S**, which on further treatmenet with ethyl 2-bromopropanoate in the presence of KOH following by acidification, gave a compound **T**. [JEE(Advanced) 2016]

14. The compound **R** is :

(B) Alanine

(C) Valine

(D) Serine

16. In the following reactions, the product S is -[JEE(Advanced) 2015] H_3C $\frac{\text{I. O}_3}{\text{II. Zn,H}_2\text{O}} R \rightarrow R$ NH₃ **-** S (A) H₃C (B) H₃C (C) (D) H₃C $H_3($ [JEE(Advanced) 2014] For the identification of β -naphthol using dye test, it is necessary to use 17. (A) dichloromethane solution of β -naphthol (B) acidic solution of β -naphthol (D) alkaline solution of β -naphthol (C) neutral solution of β -naphthol

SOLUTIONS

1. Ans. (B)

Sol.

2.

Etard reaction (P)

- 4. Ans. (9.00)
- 5. Ans. (51.00)

Sol. Common solution for Q.No. 4 and 5

Number of hetero atoms in R is 9

(R)

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

8. Ans. (B, C)

Sol.

14. Ans. (A)

15. Ans. (B)

Solution for Q.14 & 15

Q to R is Hoffmann's bromamide degradation reaction

S to T is Gabriel's phthalimide sysnthesis

16. Ans. (A)

17. Ans. (D)

Sol. In alkaline medium the activating nature of –OH group increases and the rate of electrophilic substitution (Coupling Reaction) increases on aromatic ring.


```
-OH group converts to -O^{\Theta}
Electron releasing nature of -O^{\Theta} is more than -OH
Nucleophilicity of \beta-napthol increases in basic medium
                                                          N–Ph
∥
                                                           N
                                                                   юH
                      OH
                            \overset{\oplus}{Ph-N_{2}Cl}^{\Theta}
                                               (Coloured dye)
```