INORGANIC CHEMISTRY

COORDINATION CHEMISTRY

1. Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option. [Atomic Number: Fe = 26, Mn = 25, Co = 27] [JEE(Advanced) 2023]

List-I

List-II

(P) $t_{2g}^6 e_g^0$

(1) $[Fe(H_2O)_6]^{2+}$

(Q) $t_{2g}^{3}e_{g}^{2}$

(2) $[Mn(H_2O)_6]^{2+}$

(R) $e^2 t_2^3$

(3) $\left[\text{Co(NH_3)}_6\right]^{3+}$

(S) $t_{2g}^4 e_g^2$

(4) [FeCl₄]

(5) $[CoCl_4]^{2-}$

(A) $P \rightarrow 1$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 3$

(B) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 5$

(C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 1$

(D) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 1$

2. The complex(es), which can exhibit the type of isomerism shown by [Pt(NH₃)₂Br₂], is(are)

 $[en = H_2NCH_2CH_2NH_2]$

[JEE(Advanced) 2023]

(A) $[Pt(en)(SCN)_2]$

(B) $[Zn(NH_3)_2Cl_2]$

(B) $[Pt(NH_3)_2Cl_4]$

- (D) $[Cr(en)_2(H_2O)(SO_4)]^+$
- 3. LIST-I contains metal species and LIST-II contains their properties.

LIST-I

LIST-II

 $(I) \left[Cr(CN)_6 \right]^{4-}$

(P) t_{2g} orbitals contain 4 electrons

(II) $[RuCl_6]^{2-}$

(Q) μ (spin-only) = 4.9 BM

(III) $[Cr(H_2O)_6]^{2+}$

(R) low spin complex ion

(IV) $[Fe(H_2O)_6]^{2+}$

(S) metal ion in 4+ oxidation state

(T) d⁴ species

[Given : Atomic number of Cr = 24, Ru = 44, Fe = 26]

Metal each metal species in LIST-I with their properties in LIST-II, and choose the correct option

[JEE(Advanced) 2022]

(A)
$$I \rightarrow R$$
, T; $II \rightarrow P$, S; $III \rightarrow Q$, T; $IV \rightarrow P$, Q

(B)
$$I \rightarrow R$$
, S; $II \rightarrow P$, T; $III \rightarrow P$, Q; $IV \rightarrow Q$, T

(C)
$$I \rightarrow P$$
, R; $II \rightarrow R$, S; $III \rightarrow R$, T; $IV \rightarrow P$, T

(D) I
$$\rightarrow$$
 Q, T; II \rightarrow S, T; III \rightarrow P, T; IV \rightarrow Q, R

4. The calculated spin only magnetic moments of $[Cr(NH_3)_6]^{3+}$ and $[CuF_6]^{3-}$ in BM, respectively, are

(Atomic numbers of Cr and Cu are 24 and 29, respectively)

[JEE(Advanced) 2021]

(A) 3.87 and 2.84

(B) 4.90 and 1.73

(C) 3.87 and 1.73

(D) 4.90 and 2.84

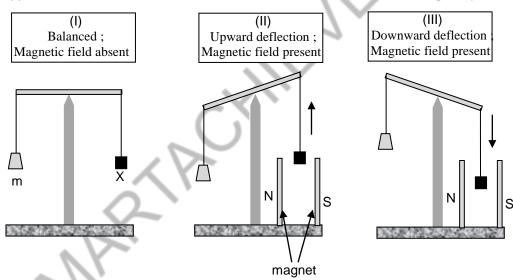
5. The total number of possible isomers for $[Pt(NH_3)_4Cl_2]Br_2$ is _____.

[JEE(Advanced) 2021]

6. The pair(s) of complexes wherein both exhibit tetrahedral geometry is(are)

(Note: py = pyridine

Given: Atomic numbers of Fe, Co, Ni and Cu are 26, 27, 28 and 29, respectively)


[JEE(Advanced) 2021]

- (A) $[FeCl_4]^-$ and $[Fe(CO)_4]^{2-}$
- (B) $[Co(CO)_4]^-$ and $[CoCl_4]^{2-}$
- (C) $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$
- (D) $[Cu(py)_4]^+$ and $[Cu(CN)_4]^{3-}$
- **7.** Choose the correct statement(s) among the following :

[JEE(Advanced) 2020]

- (A) [FeCl₄] has tetrahedral geometry.
- (B) [Co(en)(NH₃)₂Cl₂]⁺ has 2 geometrical isomers.
- (C) [FeCl₄] has higher spin-only magnetic moment than [Co(en)(NH₃)₂Cl₂]⁺.
- (D) The cobalt ion in [Co(en)(NH₃)₂Cl₂]⁺ has sp³d² hybridization.
- 8. In an experiment, *m* grams of a compound **X** (gas/liquid/solid) taken in a container is loaded in a balance as shown in figure **I** below. In the presence of a magnetic field, the pan with **X** is either deflected upwards (figure **II**), or deflected downwards (figure **III**), depending on the compound **X**. Identify the correct statement(s)

 [JEE(Advanced) 2020]

- (A) If **X** is $H_2O(l)$, deflection of the pan is upwards.
- (B) If **X** is $K_4[Fe(CN)_6](s)$, deflection of the pan is upwards.
- (C) If **X** is $O_2(g)$, deflection of the pan is downwards.
- (D) If **X** is $C_6H_6(l)$, deflection of the pan is downwards.
- 7. Total number of cis N-Mn-Cl bond angles (that is, Mn-N and Mn-Cl bonds in cis positions) present in a molecule of cis-[Mn(en)₂Cl₂] complex is ____ (en = NH₂CH₂CH₂NH₂) [JEE(Advanced) 2019]
- **10.** The correct statement(s) regarding the binary transition metal carbonyl compounds is (are)

(Atomic numbers : Fe = 26, Ni = 28)

[JEE(Advanced) 2018]

- (A) Total number of valence shell electrons at metal centre in Fe(CO)₅ or Ni(CO)₄ is 16
- (B) These are predominantly low spin in nature
- (C) Metal carbon bond strengthens when the oxidation state of the metal is lowered
- (D) The carbonyl C–O bond weakens when the oxidation state of the metal is increased

11. Among the species given below, the total number of diamagnetic species is_____.

H atom, NO₂ monomer, O₂ (superoxide), dimeric sulphur in vapour phase,

[JEE(Advanced) 2018]

12. The correct option(s) regarding the complex $[Co(en) (NH_3)_3(H_2O)]^{3+}$:

$$(en = H_2NCH_2CH_2NH_2)$$
 is (are)

[JEE(Advanced) 2018]

- (A) It has two geometrical isomers
- (B) It will have three geometrical isomers if bidentate 'en' is replaced by two cyanide ligands
- (C) It is paramagnetic
- (D) It absorbs light at longer wavelength as compared to [Co(en) (NH₃)₄]³⁺
- 13. Match each set of hybrid orbitals from LIST-I with complex (es) given in LIST-II

LIST-I	LIST-II
P. dsp^2	1. $[FeF_6]^{4-}$
$Q. sp^3$	2. $[Ti(H2O)3Cl3]$
$R. sp^3d^2$	3. $[Cr(NH_3)_6]^{3+}$
S. d^2sp^3	4. [FeCl ₄] ²⁻
	5. Ni(CO) ₄
	6. [Ni(CN) ₄] ²⁻

The correct option is

[JEE(Advanced) 2018]

(A)
$$P \rightarrow 5$$
; $Q \rightarrow 4.6$; $R \rightarrow 2.3$; $S \rightarrow 1$

(B) P
$$\rightarrow$$
 5.6: O \rightarrow 4: R \rightarrow 3: S \rightarrow 1.2

(C)
$$P \rightarrow 6$$
; $Q \rightarrow 4.5$; $R \rightarrow 1$; $S \rightarrow 2.3$

(D) P
$$\to$$
 4,6; Q \to 5,6; R \to 1,2; S \to 3

14. Addition of excess aqueous ammonia to a pink coloured aqueous solution of MCl_2 . $6H_2O$ (X) and NH_4Cl gives an octahedral complex Y in the presence of air. In aqueous solution, complex Y behaves as 1:3 electrolyte. The reaction of X with excess HCl at room temperature results in the formation of a blue coloured complex Z. The calculated spin only magnetic moment of X and Z is 3.87 B.M., whereas it is zero for complex Y.

Among the following options, which statements is(are) correct?

[JEE(Advanced) 2017]

- (A) The hybridization of the central metal ion in Y is d²sp³
- (B) Z is tetrahedral complex
- (C) Addition of silver nitrate to Y gives only two equivalents of silver chloride
- (D) When X and Z are in equilibrium at 0°C, the colour of the solution is pink
- 15. The number of geometric isomers possible for the complex $[CoL_2Cl_2]^-$ (L = $H_2NCH_2CH_2O^-$) is

[JEE(Advanced) 2016]

16. The geometries of the ammonia complexes of Ni^{2+} , Pt^{2+} and Zn^{2+} , respectively, are :

[JEE(Advanced) 2016]

- (A) octahedral, square planar and tetrahederal
- (B) square planar, octahederal and tetrahederal
- (C) tetrahederal, square planar and octahederal
- (D) octahederal, tetrahederal and square planar

17. For the octahedral complexes of Fe³⁺ in SCN⁻ (thiocyanato-S) and in CN⁻ ligand environments, the difference between the spin only magnetic moments in Bohr magnetons (when approximated to the nearest integer) is

[Atomic number of Fe = 26]

[JEE(Advanced) 2015]

18. The correct statement(s) about Cr²⁺ and Mn³⁺ is (are)

[Atomic numbers of Cr = 24 and Mn = 25]

[JEE(Advanced) 2015]

- (A) Cr²⁺ is a reducing agent
- (B) Mn³⁺ is an oxidizing agent
- (C) Both Cr^{2+} and Mn^{3+} exhibit d^4 electronic configuration
- (D) When Cr²⁺ is used as a reducing agent, the chromium ion attains d⁵ electronic configuration
- 19. In the complex acetylbromidodicarbonylbis(triethylphosphine)iron(II), the number of Fe–C bond(s) is-

[JEE(Advanced) 2015]

- **20.** Among the complex ions, $[Co(NH_2-CH_2-NH_2)_2Cl_2]^+$, $[CrCl_2(C_2O_4)_2]^{3-}$, $[Fe(H_2O)_4(OH)_2]^+$, $[Fe(NH_3)_2(CN)_4]^-$, $[Co(NH_2-CH_2-NH_2)_2(NH_3)Cl_3]^{2+}$ and $[Co(NH_3)_4(H_2O)Cl_3]^{2+}$, the number of complex ion(s) that show(s) *cis-trans* isomerism is -
- **21.** A list of species having the formula XZ_4 is given below:

 XeF_4 , SF_4 , SiF_4 , BF_4^- , BrF_4^- , $[Cu(NH_3)_4]^{2+}$, $[FeCl_4]^{2-}$, $[CoCl_4]^{2-}$ and $[PtCl_4]^{2-}$.

Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is [JEE(Advanced) 2014]

22. Match each coordination compound in List-I with an appropriate pair of characteristics from List-II and select the correct answer using the code given below the lists.

 $\{en = H_2NCH_2CH_2NH_2 \mid atomic numbers ; Ti = 22 ; Cr = 24 ; Co = 27 ; Pt = 78\}$

[JEE(Advanced) 2014]

List-I

- (P) $[Cr(NH_3)_4Cl_2]Cl$
- (Q) $[Ti(H_2O)_5Cl](NO_3)_2$
- (R) $[Pt(en)(NH_3)Cl]NO_3$
- (S) $[Co(NH_3)_4(NO_3)_2]NO_3$

Code:

P Q R S

- (A) 4 2 3 1
- (B) 3 1 4 2
- (C) 2 1 3 4
- (D) 1 3 4 2

List-II

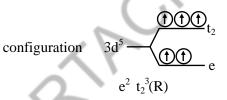
- (1) Paramagnetic and exhibits ionisation isomerism
- (2) Diamagnetic and exhibits *cis-trans* isomerism
- (3) Paramagnetic and exhibits *cis-trans* isomerism
- (4) Diamagnetic and exhibits ionisation isomerism

SOLUTIONS

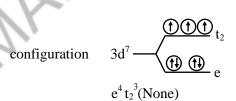
1. Ans. (D)

 $\begin{array}{ccc} \textbf{Sol.} & 1. & [Fe(H_2O)_6]^{+2} \\ & WFL \end{array}$

configuration
$$3d^6 - \underbrace{\begin{array}{c} \textcircled{\scriptsize{\textcircled{\scriptsize{1}}}} \\ e_g \\ \\ t_{2g} \end{array}}_{t_{2g}} e_g^2(S)$$


2. $[Mn(H_2O)_6]^{+2}$ WFL

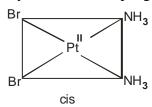
configuration
$$3d^5 \underbrace{\begin{array}{c} \textcircled{\scriptsize{\textcircled{\scriptsize{1}}}} e_g \\ \\ \underbrace{t_{2g}^3 e_g^2(Q)} \end{array}}$$

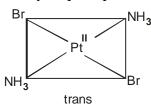

3. $[Co(NH_3)_6]^{+3}$ SFL

configuration
$$3d^6 \underbrace{\begin{array}{c} \bigcirc \\ \bullet \\ t_{2g} \end{array}} e_g$$

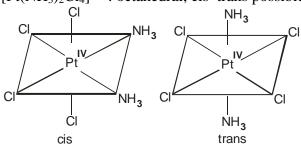
$$t_{2g}^6 \ e_g^0(P)$$

4. $[Fe Cl_4]^{\Theta}$ WFL

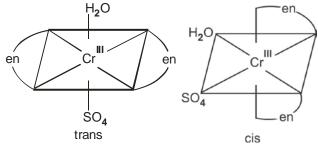

5. [Co Cl₄]⁻² WFL



2. Ans. (C, D)


Sol. $[Pt(NH_3)_2Br_2]$

 $Hybridisation: dsp^2, geometry: square\ planar$



- (A) [Pt(en)(SCN)₂] : square planar, cis-trans not possible
- (B) [Zn(NH₃)₂Cl₂] : tetrahedral, cis-trans not possible
- (C) [Pt(NH₃)₂Cl₄] : octahedral, cis–trans possible

(D) $[Cr(en)_2(H_2O)SO_4]^+$: Octahedral

3. Ans. (A)

Sol. (1) $[Cr(CN)_6]^{4-}$

 $Cr^{+2} = [Ar]_{18} 3d^4 4s^0$; low spin complex

P,R,T

(2) $[RuCl_6]^{2-}$

 $Ru^{+4} = [Kr]_{36}4d^45s^0$; low spin complex

$$\begin{array}{ccc}
- \uparrow \Delta_0 > \overline{P} & e_g^0 \\
1 \downarrow \downarrow 1 & 1 & t_2^4
\end{array}$$

P,R,S,T

(3) $[Cr(H_2O)_6]^{2+}$

 $Cr^{+2} = [Ar]_{18}3d^44s^0$; high spin complex

$$\begin{array}{ccc} \underline{1} \\ \underline{1} \\ \underline{1} \\ \underline{1} \end{array} \begin{array}{ccc} \underline{-} & e_g^1 \\ \underline{1} \\ \underline{1} \\ \underline{1} \end{array} \begin{array}{ccc} \underline{-} & t_{2g}^3 \end{array}$$

Q,T

(4) $[Fe(H_2O)_6]^{2+}$

 $Fe^{+2} = [Ar]_{18}3d^6$; High spin complex

$$\begin{array}{ccc}
\underline{1} & \underline{1} & e_g^2 \\
\underline{1} & \underline{1} & \underline{1} & t_{2g}^4
\end{array}$$

P,Q

4. Ans. (A)

Sol.
$$[Cr(NH_3)_6]^{3+}$$

$$Cr^{3+} \Rightarrow [Ar]3d^3$$

In presence of NH₃ ligand

$$1111$$
 t_{29}

Number of unpaired electrons = 3

$$\mu = \sqrt{n(n+2)}$$
 B.M.

$$\mu = \sqrt{3(3+2)}$$
 B.M.

$$\mu = \sqrt{15}$$
 B.M.

$$\left[CuF_{6}\right]^{3-}$$

$$Cu^{3+} \Rightarrow [Ar]3d^8$$

In presence of F Ligand

$$Cu^{3+} \Rightarrow \boxed{111} \quad e_g$$

$$\boxed{11} \boxed{11} \boxed{11}$$

Number of unpaired electrons = 2

$$\mu = \sqrt{n(n+2)} \ B.M.$$

$$\mu = \sqrt{2(2+2)} \implies \sqrt{8} \text{ B.M.} \implies 2.84 \text{ B.M}$$

5. Ans. (6)

Sol. Isomers

(I) [Pt (NH₃)₄ Cl₂]Br₂
$$\Rightarrow$$
 G.I. = 2

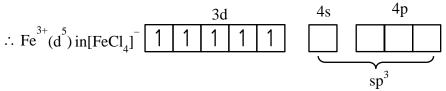
(II) [Pt (NH₃)₄ Br₂]
$$Cl_2 \Rightarrow G.I. = 2$$

(III) [Pt (NH₃)₄ BrCl] Br.Cl
$$\Rightarrow$$
 G.I. = 2

I, II, III are ionisation isomers of each other, each having 2 geometrical isomers.

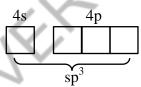
Total possible isomers will be 6

Ans. (A, B, D) **6.**


Sol. (A)

[FeCl₄]

Fe
$$\longrightarrow$$
 [Ar] $3d^64s^2$

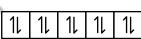

$$Fe^{+3} \longrightarrow [Ar] 3d^54s^0$$

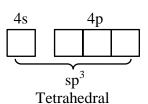
Cl is W.F.L. and does not pair up the unpaired electron of central metal atom.

$$[Fe(CO)_4]^2$$
Fe \longrightarrow [Ar] $3d^64s^2$
Fe $^{2-}$ [Ar] $3d^84s^2$

 $\therefore \text{Fe}^{2-}(\text{d}^{10}) \text{ in } [\text{Fe}(\text{CO})_4]^{2-}$

Tetrahedral

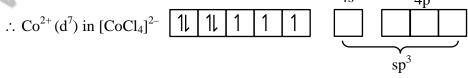

Tetrahedral


(B)

 $\begin{bmatrix} \mathbf{Co(CO)_4} \end{bmatrix}^{-}$ $\mathbf{Co} \longrightarrow [\mathbf{Ar}] \ \mathbf{3d}^{7} \mathbf{4s}^{2}$

$$Co^{-1} \longrightarrow [Ar] 3d^8 4s^2$$

 \therefore Co⁻ (d¹⁰) in [Co(CO)₄]

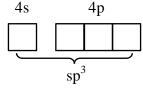


$$Co \longrightarrow [Ar] 3d^7 4s^2$$

$$\text{Co}^{+2} \longrightarrow [\text{Ar}] 3\text{d}^7 4\text{s}^0$$

Cl is W.F.L. and does not pair up the unpaired electron of central metal atom.

Tetrahedral

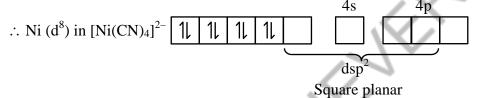

(C)

[Ni(CO)₄]

$$Ni \longrightarrow [Ar] 3d^8 4s^2$$

$$Ni^0 \longrightarrow [Ar] 3d^8 4s^2$$

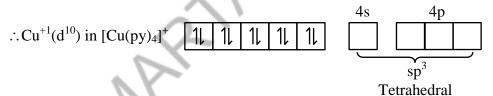
$$\therefore \ Ni \ (d^{10}) \ in \ [Ni(CO)_4] \ \boxed{1 \ 1 \ 1 \ 1} \ \boxed{1} \ \boxed{1}$$


Tetrahedral

$[Ni(CN)_4]^{2-}$

Ni
$$\rightarrow$$
 [Ar] $3d^8 4s^2$

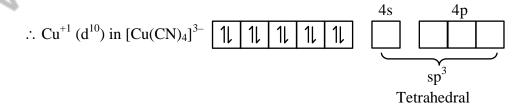
$$Ni^{+2} \longrightarrow [Ar] 3d^84s^0$$


CN is S.F.L. and pair up the unpaired electron of central metal atom.

(D) $[Cu(py)_4]$

$$Cu \longrightarrow [Ar] 3d^{10}4s^1$$

$$Cu^{+1} \longrightarrow [Ar] 3d^{10}4s^0$$



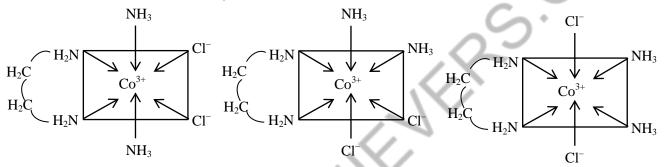
$[Cu(CN)_4]^3$

$$Cu \longrightarrow [Ar] 3d^{10}4s^{1}$$

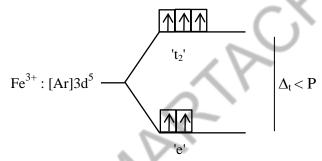
$$Cu^{+1} \longrightarrow [Ar] 3d^{10}4s^{0}$$


CN is S.F.L. and pair up the unpaired electron of central metal atom.

7. Ans. (A, C)

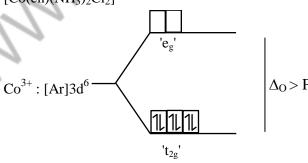

Sol.

(A) $[FeCl_4]^-$



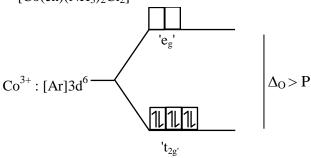
[FeCl₄]⁻ is sp³ hybridised and has tetrahedral geometry with 5 unpaired electrons.

(B) $[Co(en)(NH_3)_2Cl_2]^+$ has three geometrical isomers.


(C) $[FeCl_4]^-$

Number of unpaired electrons (n) = 5

Spin only magnetic moment = $\sqrt{n(n+2)}$ B.M. = 5.92 B.M.


 $\left[\text{Co(en)}(\text{NH}_3)_2\text{Cl}_2\right]^+$

Number of unpaired electrons (n) = 0

Spin only magnetic moment = $\sqrt{n(n+2)}$ B.M. = 0

(D) $\left[\text{Co(en)(NH_3)}_2\text{Cl}_2\right]^+$

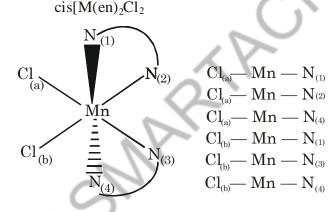
[Co(en)(NH₃)₂Cl₂]⁺ is d²sp³ hybridised and has octahedral geometry with 0 unpaired electron

8. Ans. (A, B, C)

Sol. Paramagnetic compound (X) are attracted towards magnetic field and the pan is deflected downwards.

While the **Diamagnetic compound** (X) are repelled by magnetic field and pan is deflected upward.

- (A) $X \Rightarrow H_2O \rightarrow \textbf{Diamagnetic}$ (correct)
- (B) $X \Rightarrow K_4[Fe(CN)_6](s) \rightarrow \textbf{Diamagnetic}$ (correct) Here $Fe^{2+} + Strong$ field ligand $\rightarrow 3d^6 \Rightarrow [t_2g^6, eg^0]$
- (C) $X \Rightarrow O_2 \rightarrow \textbf{Paramagnetic}$ (correct)


Here $O_2(g)$ is paramagnetic due to two-unpaired electrons present in π^* (antibonding orbitals).

(D) $X \Rightarrow C_6H_6(\ell) \rightarrow \textbf{Diamagnetic}$ (Incorrect)

It is due to presence of 0 unpaired electrons.

9. Ans. (6.00)

Sol.

Number of cis (Cl-Mn-N) = 6

- 10. Ans. (B, C)
- **Sol.** (A) [Fe(CO₅)] & [Ni(CO)₄] complexes have 18-electrons in their valence shell.
 - (B) Carbonyl complexes are predominantly low spin complexes due to strong ligand field.
 - (C) As electron density increases on metals (with lowering oxidation state on metals), the extent of synergic bonding increases. Hence M–C bond strength increases
 - (D) While positive charge on metals increases and the extent of synergic bond decreases and hence C–O bond becomes stronger.

11. Ans. (1)

Sol.

* H-atom = $1s^1$

Paramagnetic

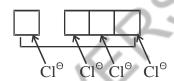
* $NO_2 = NO_2 = NO_1$ odd electron species

Paramagnetic

* O_2^- (superoxide) = One unpaired electrons in π^* M.O.

Paramagnetic

* S_2 (in vapour phase) = same as O_2 , two unpaired e^-s are present in π^* M.O.

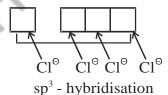

Paramagnetic

* $Mn_3O_4 = 2 MnO \cdot MnO_2$

Paramagnetic

* $(NH_4)_2[FeCl_4] =$


 $Fe^{+2} = 3d^{6} 4s^{0}$

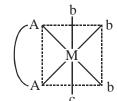


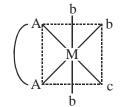
sp³- hybridisation

Paramagnetic

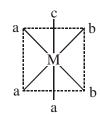
- * $(NH_4)_2 [NiCl_4] = Ni = 3d^8 4s^2$
 - $Ni^{+2} = 3d^8 4s^0$

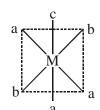
Paramagnetic


* $K_2MnO_4 = 2K^+ \begin{bmatrix} O^- \\ Mn \\ O \end{bmatrix}$, $Mn^{+6} = [Ar] 3d^{10}$

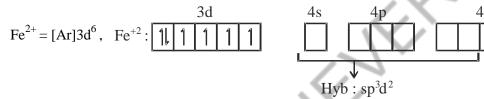

Paramagnetic

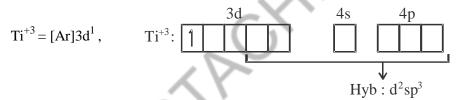
* $K_2CrO_4 = 2K^+\begin{bmatrix} O \\ || \\ O \\ -O \end{bmatrix}$, $Cr^{+6} = [Ar] 3d^0$


Diamagnetic

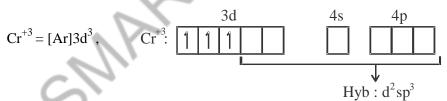

- 12. Ans. (A, B, D)
- **Sol.** (A) $[Co(en)(NH_3)_3(H_2O)]^{+3}$ complex is type of $[M(AA)b_3c]$ have two G.I.

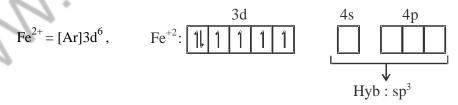
(B) If (en) is replaced by two cynide ligand, complex will be type of [Ma₃b₂c] and have 3 G.I.

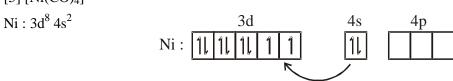


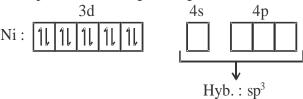

- (C) $[Co(en)(NH_3)_3(H_2O)]^{3+}$ have d^6 configuration (t^6_{2g}) on central metal with SFL therefore it is dimagnetic in nature.
- (D) Complex $[\text{Co(en)}(\text{NH}_3)_3(\text{H}_2\text{O})]^{3+}$ have lesser CFSE (Δ_O) value than $[\text{Co(en)}(\text{NH}_3)_4]^{3+}$ therefore complex $[\text{Co(en)}(\text{NH}_3)_3(\text{H}_2\text{O})]^+$ absorbs longer wavelength for d–d transition.

13. Ans. (C)

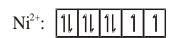

Sol. [1] $[FeF_6]^{4-}$


[2] [Ti (H₂O)₃Cl₃]

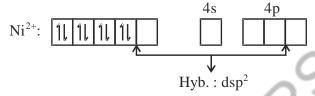

[3] $\left[\text{Cr}(\text{NH}_3)_6 \right]^{3+}$


[4] [FeCl₄]²

[5] [Ni(CO)₄]



Back pairing of electrons due to presence of strong field ligand


[6] [Ni (CN)₄]²⁻

$$\mathrm{Ni}^{2+}:\mathrm{3d}^{8}$$

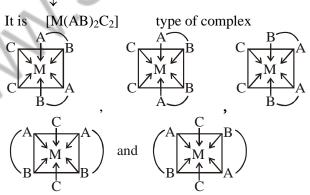
Electron pairing take place due to presence of S.F.L.

14. Ans. (A, B, D)

Sol.
$$\begin{array}{c} \text{II} \\ [Co(H_2O)_6]Cl_2 \xrightarrow{\text{Excess NH}_4OH/NH}_4Cl} \\ \text{Pink (X)} \end{array} \xrightarrow{\text{Excess NH}_4OH/NH}_4Cl} \xrightarrow{\text{III}} [Co(NH_3)_6]Cl_3 \\ \text{Y)} \end{array}$$

$$[Co(H2O)6]2+ + 4CI- \longrightarrow [CoCl4]2-$$
(**X**) (excess) (**Z**)blue

- (A) Hybridisation of (Y) is d^2sp^3 as NH_3 is strong field ligand (B) $[CoCl_4]^{2-}$ have sp^3 hybridisation as Cl^- is weak field ligand


(C)
$$[Co(NH_3)_6]Cl_3 + 3AgNO_3(aq.) \rightarrow 3AgCl$$
(Y)

(D)
$$[CoCl_4]^{2-} + 6H_2O \Longrightarrow [Co(H_2O)_6]^{2+} + 4Cl^- \Delta H = (-)ve$$
 (exothermic)

When ice is added to the solution the equilibrium shifts right hence pink colour will remain predominant So, correct answer is (A, B & D)

15. Ans. (5)

Sol.
$$[CoL_2Cl_2]^ (L = H_2NCH_2CH_2O^-)$$

 $[Co(H_2NCH_2CH_2O)_2 Cl_2]^{\Theta}$

Total geometrical isomers = 5

16. Ans. (A)

Sol.	Metal ion	Complex with NH ₃	Geometry
	Ni ²⁺	$\left[Ni(NH_3)_6\right]^{2+}$	Octahedral
	Pt ²⁺	$[Pt(NH_3)_4]^{2+}$	Square planar
	Zn^{2+}	$[Zn(NH_3)_4]^{2+}$	Tetrahedral

So, option (A) is correct.

17. Ans. (4)

111111

$$\mu = \sqrt{n(n+2)} \;\; B.M.$$

$$\mu = \sqrt{n(n+2)} \;\; B.M.$$

$$n = \text{number of unpaired electron} = 1$$

$$n = \text{number of unpaired electron} = 5$$

$$\mu = 1.73 \; B.M.$$

$$\mu = 5.92 \; B.M.$$
 difference = $5.92 - 1.73 = 4.19$

Ans. ≈ 4

18. Ans. (A, B, C)

Sol. (A) Cr^{+2} is a reducing agent : **CORRECT STATEMENT**

 Cr^{+2} is a reducing agent as its configuration changes from d^4 to d^3 and Cr^{+3} having a half filled t_{2g} level in presence of H_2O

$$Cr^{+2}$$
 \rightarrow $Cr^{+3} + e^{-3}$
 $3d^44s^\circ$ $3d^34s^\circ$

(B) Mn⁺³ is a oxidizing agent : **CORRECT STATEMENT**

The change from Mn^{+3} to Mn^{+2} results in the half filled (d^5) configuration which has extra stability

$$Mn^{+3} \xrightarrow{-e^-} Mn^{+2}$$

$$3d^44s^o \qquad 3d^54s^o$$

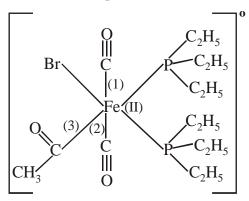
[extra stable half filled (d⁵) configuration]

(C) Both Cr⁺² and Mn⁺³ exhibit d⁴ electronic configuration : **CORRECT STATEMENT**

$$Cr^{+2} \rightarrow 3d^44s^o$$

$$Mn^{+3} \rightarrow 3d^44s^o$$

(D) When Cr⁺² is used as reducing agent chromium ion attain d⁵ electronic configuration : **INCORECT**


$$Cr^{+2} \rightarrow Cr^{+3} + e^{-}$$

$$3d^44s^o$$
 $3d^34s^o$

Reducing agent It attain d³ electronic configuration

19. Ans. (3)

Sol. Structure of complex

Total number of Fe-C bonds are 3

20. Ans. (6)

Sol. Total number of complex ions which show cis-trans isomerism

Complex ion	Complex type	Isomers
${[Co(NH_2\!\!-\!\!CH_2\!\!-\!\!CH_2\!\!-\!\!NH_2)_2\!Cl_2]}^+$	$[M(AA)_2b_2]$	1 cis + 1 trans
$\left[CrCl_2(C_2O_4)_2\right]^{3-}$	$[M(AA)_2b_2]$	1 cis + 1 trans
$\left[Fe(H_2O)_4(OH)_2\right]^+$	$[Ma_4b_2]$	1 cis + 1 trans
$[Fe(NH_3)_2(CN)_4]^-$	$[Ma_4b_2]$	1 cis + 1 trans
$[Co(NH_2-CH_2-CH_2-NH_2)_2(NH_3)Cl]^{+2}$	$[M(AA)_2bc]$	1 cis + 1 trans
$\left[Co(NH_3)_4(H_2O)Cl\right]^{+2}$	[Ma ₄ bc]	1 cis + 1 trans

All six complex ions show cis-trans isomerism

21. Ans. (4)

Sol. XeF_4 , BrF_4^- , $[Cu(NH_3)_4]^{2+}$, $[PtCl_4]^{2-}$ are square planar SF_4 – Sea saw SiF_4 , BF_4^- , $[FeCl_4]^{2-}$, $[CoCl_4]^{2-}$ are tetrahedral

22. Ans. (B)

- **Sol.** (P) [Cr^{III}(NH₃)₄Cl₂]Cl: (3 unpaired electrons)
 - (3 unpaired electrons)
 (Q) [Ti^{III}(H₂O)₅Cl](NO₃)₂

(1 unpaired electrons)

- (R) [Pt^{II}(en)(NH₃)Cl]NO₃ (1 unpaired electrons)
- (S) [Co^{III}(NH₃)₄(NO₃)₂]NO₃ (0 unpaired electrons)

- (1) Complex given in (P) is Paramagnetic & show two geometrical isomerism (cis and trans) (does not show ionization isomer)
- (2) Complex given in (Q) is paramagnetic show ionization isomerism
- (3) Complex given in (R) is diamagnetic and show ionization isomerism
- (4) Complex given in (S) is diamagnetic does not show ionization isomerism show geometrical isomerism