INORGANIC CHEMISTRY

METALLURGY

1. The correct statement(s) related to processes involved in the extraction of metals is(are)

[JEE(Advanced) 2023]

- (A) Roasting of Malachite produces Cuprite.
- (B) Calcination of Calamine produces Zincite.
- (C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
- (D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.
- **2.** The electrochemical extraction of aluminum from bauxite ore involves.

[JEE(Advanced) 2022]

- (A) the reaction of Al_2O_3 with coke (C) at a temperature > 2500°C.
- (B) the neutralization of aluminate solution by passing CO₂ gas to precipitate hydrated alumina (Al₂O₃.3H₂O).
- (C) the dissolution of Al₂O₃ in hot aqueous NaOH.
- (D) the electrolysis of Al₂O₃ mixed with Na₃AlF₆ to give Al and CO₂.
- 3. The treatment of galena with HNO₃ produces a gas that is

[JEE(Advanced) 2022]

(A) paramagnetic

(B) bent in geometry

(C) an acidic oxide

- (D) colorless
- 4. The correct option(s) related to the extraction of iron from its ore in the blast furnace operating in the temperature range 900 1500 K is(are) [JEE(Advanced) 2022]
 - (A) Limestone is used to remove silicate impurity.
 - (B) Pig iron obtained from blast furnace contains about 4% carbon.
 - (C) Coke (C) converts CO₂ to CO.
 - (D) Exhaust gases consist of NO₂ and CO.
- **5.** The correct statement(s) related to the metal extraction processes is(are)

[JEE(Advanced) 2021]

- (A) A mixture of PbS and PbO undergoes self-reduction to produce Pb and SO₂.
- (B) In the extraction process of copper from copper pyrites, silica is added to produce copper silicate.
- (C) Partial oxidation of sulphide ore of copper by roasting, followed by self-reduction produces blister copper.
- (D) In cyanide process, zinc powder is utilized to precipitate gold from Na[Au(CN)₂].
- **6.** Which among the following statement(s) is(are) true for the extraction of aluminium from bauxite?

[JEE(Advanced) 2020]

- (A) Hydrated Al₂O₃ precipitates, when CO₂ is bubbled through a solution of sodium aluminate.
- (B) Addition of Na₃AlF₆ lowers the melting point of alumina.
- (C) CO₂ is evolved at the anode during electrolysis.
- (D) The cathode is a steel vessel with a lining of carbon.

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

9	,				
7.	Calamine, malachite, magnetite and cryolite, respectively are				[JEE(Advanced) 2019
	(A) ZnSO ₄ , CuCO ₃ ,	Fe ₂ O ₃ , AlF ₃	(B) Z	ZnCO ₃ , CuCO ₃ .C	Cu(OH) ₂ , Fe ₃ O ₄ , Na ₃ AlF ₆
	(C) ZnSO ₄ , Cu(OH) ₂ , Fe ₃ O ₄ , Na ₃ AlF ₆		(D) Z	(D) ZnCO ₃ , CuCO ₃ , Fe ₂ O ₃ , Na ₃ AlF ₆	
8.	The cyanide process of gold extraction involves leaching out gold from its ore with CN in the presence of				
	Q in water to form R . Subsequently, R is treated with T to obtain Au and Z . Choose the correct option(s).				
					[JEE(Advanced) 2019]
	(A) T is Zn		(B) I	R is [Au(CN) ₄] ⁻	
	(C) Z is $[Zn(CN)_4]^{2-}$	-	(D) (Q is O ₂	
9.	Galena (an ore) is partially oxidized by passing air through it at high temperature. After some time, the				
	passage of air is stopped, but the heating is continued in a closed furnance such that the contents undergo				
	self-reduction. The weight (in kg) of Pb produced per kg of O_2 consumed is				
	(Atomic weights in g mol^{-1} : O = 16, S = 32, Pb = 207)				[JEE(Advanced) 2018]
10.	Extraction of copper from copper pyrite (CuFeS ₂) involves				[JEE(Advanced) 2016]
	(A) crushing followed by concentration of the ore by froth-flotation				
	(B) removal of iron as slag				
	(C) self-reduction step to produce 'blister copper' following evolution of SO ₂				
	(D) refining of 'blister copper' by carbon reduction				
11.	Copper is purified by electrolytic refining of blister copper. The correct statement(s) about this process is				
	(are))`		[JEE(Advanced) 2015]
	(A) Impure Cu strip is used as cathode				
	(B) Acidified aqueuous CuSO ₄ is used as electrolyte				
	(C) Pure Cu deposits at cathode				
	(D) Impurities settle as anode-mud				
12.	Match the anionic species given in Column-I that are present in the ore(s) given in Column-II				
	- Mi				[JEE(Advanced) 2015]
	Column - I		Colu	mn - II	
	(A) Carbonate		(P)	Siderite	
	(B) Sulphide		(Q)	Malachite	
	(C) Hydroxide		(R)	Bauxite	
	(D) Oxide		(S)	Calamine	
7			(T)	Argentite	
13.	Upon heating with Cu ₂ S, the reagent(s) that give copper metal is/are				
					[JEE(Advanced) 2014]
	(A) CuFeS ₂	(B) CuO	(C) (Cu ₂ O	(D) CuSO ₄

SOLUTIONS

- 1. Ans. (B, C, D)
- **Sol.** \Rightarrow Under roasting condition, the malachite will be converted into

$$CuCO_3.Cu(OH)_2 \rightarrow 2CuO + CO_2 + H_2O$$

$$\Rightarrow \quad \operatorname{ZnCO_3} \to \operatorname{ZnO} + \operatorname{CO_2} \uparrow$$
(Calamine) (Zincite)

⇒ Copper pyrites is heated in a reverberatory furnace after mixing with silica. In the furnace, iron oxide 'slag of' as iron silicate and copper is produced in the form of copper matte.

$$FeO + SiO_2 \rightarrow FeSiO_3$$
(Slag)

$$\Rightarrow Ag + KCN + O_2 + H_2O \longrightarrow [Ag(CN)_2]^- + KOH$$

$$\downarrow Zn$$

$$Ag \downarrow + [Zn(CN)_4]^2$$

- 2. Ans. (B, C, D)
- **Sol.** (A) Electrochemical extraction of Aluminum from bauxite done below 2500°C
 - (B) $2\text{Na}[\text{Al}(\text{OH})_4]_{\text{aq.}} + 2\text{CO}_{2(g)} \rightarrow \text{Al}_2\text{O}_3.3\text{H}_2\text{O}_{(s)} \downarrow + 2\text{NaHCO}_{3(\text{aq.})}$ The sodium aluminate present in solution is neutralised by passing CO₂ gas and hydrated Al₂O₃ is precipitated.
 - (C) $Al_2O_{3(s)} + 2NaOH_{(aq.)} + 3H_2O_{(l)} \rightarrow 2Na[Al(OH)_4]_{aq.}$ Concentration of bauxite is carried out by heating the powdered ore with hot concentrated solution of NaOH.
 - (D) In metallurgy of aluminum, Al₂O₃ is mixed with Na₃AlF₆
- 3. Ans. (A, D)

Sol.
$$3PbS + 8HNO_3 \rightarrow 3Pb(NO_3)_2 + 2NO + 4H_2O + S$$

NO ⇒ Neutral oxide, Paramagnetic, Linear geometry, Colourless gas

- 4. Ans. (A, B, C)
- **Sol.** (A) CaO + SiO₂ \rightarrow CaSiO₃ (in the temperature range 900 1500 K)
 - (B) In fusion zone molten iron becomes heavy by absorbing elemental impurities and produces Pig iron. (in the temperature range 900 1500 K)
 - (C) C + CO₂ \rightarrow 2CO (in the temperature range 900 1500 K)
 - (D) Exhaust gases does not contain NO₂.
- 5. Ans. (A, C, D)

Sol. (A) PbS + 2PbO
$$\rightarrow$$
 3Pb + SO₂ (self reduction)

- (B) Silica is added to remove impurity of Fe in the form of slag FeSiO₃
- (C) CuFeS₂ ore is partially oxidized first by roasting and then self reduction of Cu takes place to produce blister copper.

(D) 4 Na [Au (CN)₂] +2 Zn
$$\longrightarrow$$
 2 Na₂[Zn(CN)₄] + 4 Au Reducing

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

6. Ans. (A, B, C, D)

Sol. (A)
$$2Na[Al(OH)_4]_{(aq.)} + CO_2 \longrightarrow Na_2CO_3 + H_2O + 2Al(OH)_3(\downarrow)$$

or

$$Al_2O_3.2H_2O$$
 (ppt)

- (B) Function of Na₃AlF₆ is to lower the melting point of electrolyte.
- (C) During electrolysis of Al₂O₃, the reactions at anode are :

$$\begin{bmatrix} 2Al^{3+}(\ell) + 3O^{2-}(\ell) & \xrightarrow{At \text{ anode}} O_2(gas) + 2e^- \end{bmatrix}$$

$$C(graphite) + O_2 & \longrightarrow CO(\uparrow) + CO_2(\uparrow)$$

- (D) The steel vessel with a lining of carbon acts as cathode.
- 7. Ans. (B)

Sol. Ore Formula

Calamine ZnCO₃

Malachite CuCO₃.Cu(OH)₂

Magnetite Fe₃O₄

Cryolite Na₃AlF₆

So correct answer is option(2)

8. Ans. (A, C, D)

Sol.
$$4\text{Au}(s) + 8\text{CN}^{-}(aq) + 2\text{H}_2\text{O}(aq) + \text{O}_2(g) \rightarrow 4[\text{Au}(\text{CN})_2]^{-}(aq) + 4\text{OH}^{-}(aq)$$
(O)

$$2[Au(CN)_2]^-(aq) + Zn(s) \rightarrow [Zn(CN)_4]^{2-}(aq) + 2Au(s)$$

$$(\mathbf{Z})$$

9. Ans. (6.47)

Sol.
$$PbS + O_2 \longrightarrow Pb + SO_2$$

$$\frac{1000}{32}$$
 mol $\frac{1000}{32} \times 207$ gm

 $mol of Pb = mol of O_2$

$$=\frac{1000}{32}mol$$

$$\therefore$$
 mass of Pb = $\frac{1000}{32} \times 207 \text{ g} = \frac{207}{32} \text{kg} = 6.47 \text{ kg}$

10. Ans. (A, B, C)

Copper pyrite [CuFeS₂]

Sol.

Concentrated by froth floatation process

Roasting take place in reverberatory furnace

$$\begin{cases} 2CuFeS_2 + O_2 & \xrightarrow{\Delta} Cu_2S + 2FeS + SO_2 \\ (air) & \\ FeS + O_2 & \xrightarrow{\Delta} FeO + SO_2 \\ & \\ Smelting & \\ FeO + SiO_2(flux) & \xrightarrow{\Delta} FeSiO_3(\ell)(slag) \end{cases}$$

Self reduction occurs in Bessemer converter
$$2Cu_2S + 3O_2 \longrightarrow 2Cu_2S + 2SO_2(\uparrow)$$
 $Cu_2S + 2Cu_2O \longrightarrow 6Cu + SO_2(\uparrow)$ (Blister copper)

ister copp

Refining of blister copper is done by poling followed by electrorefining but not by carbon reduction method.

11. Ans. (B, C, D)

Sol. (A) Impure Cu strip is used as cathode: INCORRECT

Impure Cu strip is used as anode

- (B) Aq. solution of (CuSO₄ + H₂SO₄) is used as electrolyte : **CORRECT**
- (C) Pure Cu deposites at cathode: CORRECT

$$Cu^{+2} \xrightarrow{+2e^{-}} Cu$$

At cathode

(D) Impurities settle as anode mud: CORRECT

In electrorefining impurities are either soluble in electrolyte solution or deposit below anode known as anode mud.

12. Ans. (A - P, Q, S; B - T; C - Q, R; D - R)

Sol.
$$(A) \rightarrow P, Q, S,$$

$$(B) \rightarrow T$$

$$(C) \rightarrow Q, R,$$

$$(\mathbf{D}) \to \mathbf{R}$$

Siderite: FeCO₃

Malachite: CuCO₃.Cu(OH)₂

Bauxite: Al₂O₃.2H₂O consisting of part of hydroxide of aluminium also and the general formula is

 $AlO_x(OH)_{3-2x}$

where 0 < x < 1

Calamine: $ZnCO_3$

Argentite: Ag₂S

13. Ans. (C)

Sol.
$$Cu_2S + 2Cu_2O \xrightarrow{\Delta} 6Cu + SO_2$$