PHYSICAL CHEMISTRY

ELECTROCHEMISTRY

1. Plotting $1/\Lambda_m$ against $c\Lambda_m$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y-axis intercept of P and slope of S. The ratio P/S is [JEE(Advanced) 2023] $[\Lambda_m = molar \text{ conductivity}]$

 Λ_m° = limiting molar conductivity

c = molar concentration

2.

 K_a = dissociation constant of HX]

(A) $K_a \Lambda_m^\circ$ (B) $K_a \Lambda_m^\circ / 2$ (C) $2 K_a \Lambda_m^\circ$

[JEE(Advanced) 2022]

(D) $1 / (K_a \Lambda)$

The reduction potential (E^0 , in V) of MnO_4^- (aq)/Mn(s) is _____.

 $[\text{Given}: \mathbf{E}_{(\text{MnO}_{4}(\text{aq})/\text{MnO}_{2}(\text{s}))}^{0} = 1.68 \text{ V} ; \mathbf{E}_{(\text{MnO}_{2}(\text{s})/\text{Mn}^{2+}(\text{aq}))}^{0} = 1.21 \text{ V} ; \mathbf{E}_{(\text{Mn}^{2+}(\text{aq})/\text{Mn}(\text{s}))}^{0} = -1.03 \text{ V}]$ Consider the strong electrolytes Z X. II X, and V X. Limiting molar conductivity (Λ^{0}) of

3. Consider the strong electrolytes $Z_m X_n$, $U_m Y_p$ and $V_m X_n$. Limiting molar conductivity (Λ^0) of $U_m Y_p$ and $V_m X_n$ are 250 and 440 S cm² mol⁻¹, respectively. The value of (m + n + p) is _____. Given:

Ion	Z^{n+}	U^{p+}	V^{n+}	X ^{m-}	Y ^{m-}
λ^0 (S cm ² mol ⁻¹)	50.0	25.0	100.0	80.0	100.0

 λ^0 is the limiting molar conductivity of ions

The plot of molar conductivity (Λ) of $Z_m X_n vs c^{1/2}$ is given below.

[JEE(Advanced) 2022]

- 4. The correct option(s) about entropy (S) is(are)[R = gas constant, F = Faraday constant, T = Temperature]
 - (A) For the reaction, $M(s) + 2H^+(aq) \rightarrow H_2(g) + M^{2+}(aq)$, if $\frac{dE_{cell}}{dT} = \frac{R}{F}$, then the entropy change of the

reaction is R (assume that entropy and internal energy changes are temperature independent).

- (B) The cell reaction, $Pt(s) | H_2(g, 1bar) | H^+(aq, 0.01M) || H^+(aq, 0.1M) | H_2(g, 1bar) | Pt(s)$, is an entropy driven process.
- (C) For racemization of an optically active compound, $\Delta S > 0$.
- (D) $\Delta S > 0$, for $[Ni(H_2O)_6]^{2+} + 3 \text{ en} \rightarrow [Ni(en)_3]^{2+} + 6H_2O$ (where en = ethylenediamine).

[JEE(Advanced) 2022]

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

5.	Some standard e	electrode potentials at 298 K are given below	: [JEE(Advanced) 2021]
	Pb ²⁺ /Pb	–0.13 V	
	Ni ²⁺ /Ni	–0.24 V	
	Cd ²⁺ /Cd	-0.40 V	
	Fe ²⁺ /Fe	-0.44 V	
	To a solution co	ntaining 0.001 M of \mathbf{X}^{2+} and 0.1 M of \mathbf{Y}^{2+} , the second se	he metal rods X and Y are inserted (at 298 K)
	and connected	by a conducting wire. This resulted in diss	olution of X. The correct combination(s) of
	X and Y, respec	tively, is (are)	

(Given: Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$,

Faraday constant, $F = 96500 \text{ C mol}^{-1}$)

(A) Cd and Ni (B) Cd and Fe (C) Ni and Pb

(D) Ni and Fe

Question Stem for Question Nos. 6 and 7

Question Stem

At 298 K, the limiting molar conductivity of a weak monobasic acid is 4×10^2 S cm² mol⁻¹. At 298 K, for an aqueous solution of the acid the degree of dissociation of α and the molar conductivity is $v \times 10^2$ S cm² mol⁻¹. At 298 K, upon 20 times dilution with water, the molar conductivity of the solution becomes $3\mathbf{v} \times 10^2 \text{ S cm}^2 \text{ mol}^{-1}$.

6. The value of
$$\alpha$$
 is _____

- 7. The value of **y** is _____
- Consider a 70% efficient hydrogen-oxygen fuel cell working under standard conditions at 1 bar and 298 8. K. Its cell reaction is [JEE(Advanced) 2020]

$$\mathrm{H}_{2}(\mathrm{g}) + \frac{1}{2}\mathrm{O}_{2}(\mathrm{g}) \rightarrow \mathrm{H}_{2}\mathrm{O}(\ell).$$

The work derived from the cell on the consumption of 1.0×10^{-3} mol of H₂(g) is used to compress 1.00 mol of a monoatomic ideal gas in a thermally insulted container. What is the change in the temperature (in K) of the ideal gas?

The standard reduction potentials for the two half-cells are given below.

$$O_2(g) + 4 H^+ (aq.) + 4e^- \rightarrow 2H_2O(\ell)$$
, $E^o = 1.23 V$

 $2H^+$ (aq.) + $2e^- \rightarrow H_2(g), E^\circ = 0.00V.$

Use $F = 96500 \text{ C mol}^{-1}$, $R = 8.314 \text{ J mol}^{-1}\text{K}^{-1}$

9. For the electrochemical cell,

 $Mg(s)|Mg^{2+}(aq, 1M)||Cu^{2+}(aq, 1M)||Cu(s)|$

the standard emf of the cell is 2.70 V at 300 K. When the concentration of Mg^{2+} is changed to x M, the cell potential changes to 2.67 V at 300 K. The value of x is_____.

(given, $\frac{F}{R}$ = 11500 KV⁻¹, where F is the Faraday constant and R is the gas constant, ln(10) = 2.30)

Consider an electrochemical cell: A(s) | A^{n+} (aq, 2M) || B^{2n+} (aq, 1M) | B(s). The value of ΔH^{θ} for the cell 10. reaction is twice that of ΔG^{θ} at 300 K. If the emf of the cell is zero, the ΔS^{θ} (in JK⁻¹ mol⁻¹) of the cell reaction per mole of B formed at 300 K is

(Given : $\ln (2) = 0.7$, R (universal gas constant) = 8.3 J K⁻¹ mol⁻¹. H, S and G are enthalpy, entropy and Gibbs energy, respectively.) [JEE(Advanced) 2018]

[JEE(Advanced) 2021] [JEE(Advanced) 2021]

[JEE(Advanced) 2018]

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

11. The conductance of a 0.0015 M aqueous solution of a weak monobasic acid was determined by using a conductivity cell consisting of platinized Pt electrodes. The distance between the electrodes is 120 cm with an area of cross section of 1 cm². The conductance of this solution was found to be 5 × 10⁻⁷S. The pH of the solution is 4. The value of limiting molar conductivity (Λ⁰_m) of this weak monobasic acid in aqueous solution is Z × 10²S cm⁻¹mol⁻¹. The value of Z is. [JEE(Advanced) 2017]
12. For the following cell : [JEE(Advanced) 2017]

 $Zn(s) | ZnSO_4 (aq.) || CuSO_4 (aq.) | Cu(s)$

when the concentration of Zn^{2+} is 10 times the concentration of Cu^{2+} , the expression for ΔG (in J mol⁻¹) is

[F is Faraday constant, R is gas constant, T is temperature, E°(cell) = 1.1V] (A) 2.303 RT + 1.1F (B) 2.303 RT - 2.2F

(C) 1.1 F (D) –2.2 F

13. For the following electrochemical cell at 298K,

 $Pt(s) | H_2(g, 1bar) | H^+ (aq, 1M) || M^{4+}(aq.), M^{2+}(aq.) | Pt(s)$

$$E_{cell} = 0.092 \text{ V}$$
 when $\frac{[M^{2+}(aq.)]}{[M^{4+}(aq.)]} = 10^x$

Given : $E_{M^{4+}/M^{2+}}^{0} = 0.151V$; 2.303 $\frac{RT}{F} = 0.059$

The value of x is -

16.

(A) -2 (B) -1 (C) 1 (D) 2

14. All the energy released from the reaction $X \to Y$, $\Delta_r G^\circ = -193 \text{ kJ mol}^{-1}$ is used for the oxidizing M^+ and $M^+ \to M^{3+} + 2e^-$, $E^\circ = -0.25 \text{ V}$.

Under standard conditions, the number of moles of M^+ oxidized when one mole of X is converted to Y is [F = 96500 C mol⁻¹] [JEE(Advanced) 2015]

15. The molar conductivity of a solution of a weak acid HX (0.01 M) is 10 times smaller than the molar conductivity of a solution of a weak acid HY (0.1 M). If $\lambda^0_{X-} \approx \lambda^0_{Y-}$, the difference in their pK_a values, pK_a(HX) – pK_a(HY), is (consider degree of ionization of both acids to be <<1).

[JEE(Advanced) 2015] [JEE(Advanced) 2014]

[JEE(Advanced) 2016]

(A) Does not participate chemically in the cell reaction

In a galvanic cell, the salt bridge -

- (B) Stops the diffusion of ions from one electrode to another
- (C) Is necessary for the occurence of the cell reaction
- (D) Ensures mixing of the two electrolytic solutions

SOLUTIONS

1. Ans. (A)

Sol. For weak acid, $\alpha = \frac{\Lambda_{m}}{\Lambda_{0}}$ $K_{a} = \frac{C\alpha^{2}}{1-\alpha} \Rightarrow K_{a}(1-\alpha) = C\alpha^{2}$ $\Rightarrow K_{a} \left(1 - \frac{\Lambda_{m}}{\Lambda_{0}}\right) = C \left(\frac{\Lambda_{m}}{\Lambda_{0}}\right)^{2}$ $\Rightarrow K_{a} - \frac{\Lambda_{m}K_{a}}{\Lambda_{0}} = \frac{C\Lambda_{m}^{2}}{(\Lambda_{0})^{2}}$ Divide by ' Λ_{m} ' $\Rightarrow \frac{K_{a}}{\Lambda_{m}} = \frac{C\Lambda_{m}}{(\Lambda_{0})^{2}} + \frac{K_{a}}{\Lambda_{0}}$ $\Rightarrow \frac{1}{\Lambda_{m}} = \frac{C\Lambda_{m}}{K_{a}(\Lambda_{0})^{2}} + \frac{1}{\Lambda_{0}}$ Plot $\frac{1}{\Lambda_{m}}$ vs C Λ_{m} has

Plot $\frac{1}{\Lambda_m}$ vs $C \Lambda_m$ has

$$\text{Slope} = \frac{1}{K_a(\Lambda_0)^2} = S$$

y-intercept =
$$\frac{1}{\Lambda_0}$$
 = F

Then,
$$\frac{P}{S} = \frac{\frac{1}{\Lambda_0}}{\frac{1}{K_a(\Lambda_0)^2}} = K_a \Lambda_0$$

2. Ans. (0.74 - 0.80)

Sol.
$$\stackrel{+7}{\text{M}} \stackrel{\text{O}_4^-}{\longrightarrow} \stackrel{(3)}{\longrightarrow} \stackrel{+4}{\text{M}} \text{nO}_2 \stackrel{(2)}{\longrightarrow} \text{Mn}^{+2} \stackrel{(2)}{\longrightarrow} \text{Mn}$$

For the required reaction $\Delta G^{\circ} = \Delta G^{\circ}_{1} + \Delta G^{\circ}_{2} + \Delta G^{\circ}_{3}$ $\Rightarrow 7 \times E = 1.68 \times 3 + 1.21 \times 2 + (-1.03) \times 2$ $E = \frac{5.4}{7} = 0.7714$ Ans. = 0.77

7

3. Ans. (7) $\Lambda^{\circ} \left(U_{m} Y_{p} \right) = m \times \lambda^{\circ}_{IIP^{+}} + p \times \lambda^{\circ}_{Y^{m_{-}}} = 250$ Sol. 25m + 100p = 250m + 4p = 10....(1) $\Lambda^{\circ} \! \left(\boldsymbol{V}_{m} \boldsymbol{X}_{n} \right) \! = \! m \times \boldsymbol{\lambda}_{\boldsymbol{V}^{n+}} + n \! \times \! \boldsymbol{\lambda}_{\boldsymbol{X}^{m-}}^{\circ} = \! 440$ 100m + 80n = 4405m + 4n = 22....(2) 340 $\Lambda \big(Z_m X_n \big)^{339}$ 336 0.01 0.04 \sqrt{C} From the extrapolation of curve $\Lambda^{\circ}(\mathbf{Z}_{\mathrm{m}}\mathbf{X}_{\mathrm{n}}) = 340$ $m \times \lambda_{z^{n+}}^{\circ} + n \lambda_{x^{m-}}^{\circ} = 340$ 50m + 80n = 3405m + 8n = 34(3) $(3) - (2) \implies$ $4n = 12 \implies n = 3$ Putting in (2) we get m = 2Putting in (1) we get p = 2m + n + p = 2 + 3 + 2 = 74. Ans. (B, C, D) $\Delta G = \Delta H - T \Delta S$ Sol. $\Delta G = \Delta H + T \left(\frac{d\Delta G}{dT} \right)$ $\frac{\overline{dE}_{cell}}{dT} = \frac{\Delta S}{nF} = \frac{R}{F} (given)$ $\Rightarrow \Delta S = nR$ For the reaction, $M(g) + 2H^{\oplus}(aq) \longrightarrow H_2(g) + M^{2\oplus}(aq)$ n = 2 $\Delta S = 2R$ \Rightarrow Hence, option (A) is incorrect

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

For the reaction, $Pt_{(s)} |H_{2(g)}, 1 \text{ bar} | H^{\oplus}_{aq}(0.01M) || H^{\oplus}(aq, 0.1M) | H_2(g, 1 \text{ bar}) | Pt_{(s)}$ $E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{1} \log \frac{0.01}{0.1} = 0.0591V$ E_{cell} is positive $\Rightarrow \Delta G < 0$ and $\Delta S > 0$ ($\Delta H = 0$ for concentration cells) Hence, option (B) is correct Racemization of an optically active compound is a spontaneous process. Here, $\Delta H = 0$ (similar type of bonds are present in enantiomers) $\Rightarrow \Delta S > 0$ Hence, option (C) is correct. $\left[\operatorname{Ni}(\operatorname{H}_2 \operatorname{O})_{6}\right]^{2+}$ + 3 en $\rightarrow \left[\operatorname{Ni}(\operatorname{en})_{3}\right]^{2+}$ + 6H₂O is a spontaneous process more stable complex is formed $\Rightarrow \Delta S > 0$ Hence, option (D) is correct. 5. Ans. (A, B, C) $x(s) \longrightarrow x^{+2} (0.001 \text{ M}) + 2e^{-} (anode)$ Sol. y^{+2} (0.1 M) + 2e⁻ \longrightarrow y (s) (cathode) $E_{cell} = E_{cell}^{\circ} - \frac{0.06}{2} \log \frac{x^{+2}}{y^{+2}}$ $E_{cell} = E^{\circ}_{cell} + 0.06$ (A) Cd and Ni $E^{\circ}_{cell} = +0.4 - 0.24$; $E_{cell} = 0.22$ (B) Cd and Fe $E^{\circ}_{cell} = -0.04$; $E_{cell} = 0.02$ (C) Ni and Pb $E^{\circ}_{cell} = 0.11$; $E_{cell} = 0.17$ (D) Ni and Fe $E^{\circ}_{cell} = -0.2$; $E_{cell} = -0.14$ since in (A) (B) (C) E_{cell} is positive hence answer is (A) (B) (C). Ans. (0.21 or 0.22) 6. **Sol.** $K_a = \frac{\Lambda_m^2 C}{\Lambda_m^\circ (\Lambda_m^\circ - \Lambda_m)}$ $K_{a} = \frac{(y \times 10^{2})^{2} \times C}{4 \times 10^{2} (4 \times 10^{2} - y \times 10^{2})} = \frac{(3y \times 10^{2})^{2} \times \frac{C}{20}}{4 \times 10^{2} (4 \times 10^{2} - 3y \times 10^{2})}$ $\frac{1}{1-y} = \frac{9}{20(4-3y)} \Rightarrow y = \frac{44}{51}$ $=\frac{\frac{44}{51}\times10}{10^2}$ $\alpha = 0.2156 \ (\alpha = 0.22 \text{ or } 0.21)$ y = 0.86 6

7. Ans. (0.86) 8. Ans. (13.00 - 13.60) $E_{cell}^0 = 1.23 - 0.00 = 1.23 V$ Sol. $\Delta G^{\,0}_{\,\,cell} = -nF\,E^0_{\,cell} = -2\times96500\times1.23\,\,J$ Work derived from this fuel cell ÷. $=\frac{70}{100}\times\left(-\Delta G_{cell}^{0}\right)\times10^{-3}=xJ$ Since insulated vessel, hence q = 0From equation, for monoatomic gas, $w = \Delta U \qquad \Rightarrow \qquad x = nC_{V,m}\Delta T \left\{ C_{V,m} = \frac{3R}{2} \right\}$ $\frac{70}{100} \times (2 \times 96500 \times 1.23) \times 10^{-3} = 1 \times \frac{3}{2} \times 8.314 \times \Delta T$ or, $\Delta T = 13.32$... 9. Ans. (10) $Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s)$ Sol. $E^{\circ}_{Cell} = 2.70$ $E_{Cell} = 2.67$ $Mg^{2+} = x M$ $Cu^{2+} = 1 M$ $E_{Cell} = E^{\circ}_{Cell} - \frac{RT}{nF} \ln x$ $2.67 = 2.70 - \frac{RT}{2E} \ln x$ $-0.03 = -\frac{R \times 300}{2E} \times \ln x$ $\ln x = \frac{0.03 \times 2}{300} \times \frac{F}{R} = \frac{0.03 \times 2 \times 11500}{300 \times 1}$ $\ln x = 2.30 = \ln(10)$ x = 10 10. Ans. (-11.62) A(s) | A^{+n} (aq, 2M) || B^{+2n} (aq, 1M) | B(s) $\Delta H^{\circ} = 2\Delta G^{\circ}_{0}$ $E_{cell} = 0$ Cell Rx $A \rightarrow A^{+n} + ne^{-1} > 2$ Sol. $B^{+2n} + 2n e^- \rightarrow B(s)$ $2A(s) + B_{1M}^{+2n}(aq) \rightarrow 2A^{+n}(aq) + B(s)$ $\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \ln \frac{\left[\mathbf{A}^{+n}\right]^2}{\left[\mathbf{B}^{+2n}\right]}$ $\Delta G^{\circ} = -RT \ln \frac{\left[A^{+n}\right]^2}{\left[R^{+2n}\right]^2} = -RT \cdot \ln \frac{2^2}{1} = -RT \cdot \ln 4$ $\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ$

 $\Delta G^{\circ} = 2\Delta G^{\circ} - T\Delta S^{\circ}$

 $\Delta S^{\circ} = \frac{\Delta G^{\circ}}{T} = -\frac{RT \ln 4}{T} = -8.3 \times 2 \times 0.7 = -11.62 \text{ J/K.mol}$

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions 11. Ans. (6) **Sol.** For weak acid $[H^+] = c\alpha = c \frac{\Lambda_m^C}{\Lambda_m^\infty} = c \times \frac{\kappa \times \frac{1000}{c}}{\Lambda_m^\infty} = \frac{\kappa \times 1000}{\Lambda^\infty} = \frac{G \times \left(\frac{l}{a}\right) \times 1000}{\Lambda^\infty}$ $10^{-4} = \frac{5 \times 10^{-7} \times \left(\frac{120}{1}\right) \times 1000}{Z \times 10^2} \Longrightarrow Z = 6$ 12. Ans. (B) **Sol.** $\Delta G = \Delta G^0 + 2.303 \text{RT} \log Q$ $\Delta G = - nFE^0 + 2.303RT \log Q$ Given : $E^{\circ} = 1.1 V$ and n = 2 $\Delta G = (-2 \times 1.1 \times F) + 2.303 RT \log[\frac{[Zn^{+2}]}{Cn^{+2}}]$ $\Delta G = -2.2 F + 2.303 RT$ 13. Ans. (D) At anode : $H_2(g) = 2H^+(aq) + 2e^{-1}$ Sol. At cathode : $M^{4+}(aq) + 2e^{-} \longrightarrow M^{2+}(aq)$ Net cell reaction : $H_2(g) + M^{4+} (aq) \rightleftharpoons 2H^+ (aq) + M^{2+} (aq)$ Now, $E_{cell} = \left(E_{M^{4+}/M^{2+}}^{\circ} - E_{H^{+}/H_{2}}^{\circ}\right) - \frac{0.059}{n} \cdot \log \frac{\left[H^{+}\right]^{2} \left[M^{2+}\right]}{P_{H_{2}} \cdot \left[M^{4+}\right]}$ or, $0.092 = (0.151 - 0) - \frac{0.059}{2} \cdot \log \frac{1^{2} \times \left[M^{2+}\right]}{1 \times \left[M^{4+}\right]}$

$$\frac{\left[\mathbf{M}^{2+}\right]}{\left[\mathbf{M}^{4+}\right]} = 10^2 \implies \mathbf{x} = 2$$

Ans. (4)

Sol. $|\Delta \mathbf{G}| = -\mathbf{n}\mathbf{F}\mathbf{E}$

$$193 \times 10^{3} = x \times 2 \times 96500 \times 0.25$$

(where x is the number of moles of M^+ oxidised)

- 15. Ans. (3)
- Sol. $\Lambda_{m}(HX) = \frac{x}{10}$ $\Lambda_{m}(HY) = x$ $\frac{\Lambda_{m}(HX) / \Lambda_{m}^{0}(HX)}{\Lambda_{m}(HY) / \Lambda_{m}^{0}(HY)} = \frac{(x/10) / \Lambda_{m}^{0}(HX)}{x / \Lambda_{m}^{0}(HY)} = \frac{\alpha_{1}}{\alpha_{2}} = \frac{1}{10}$ HX \longleftrightarrow H⁺ + X⁻ 0.01 - - - $0.01(1 - \alpha_{1})$ $0.01 \alpha_{1}$ $0.01 \alpha_{1}$ $K_{a_{1}} = 0.01\alpha_{1}^{2}$ HY \longleftrightarrow H⁺ + Y⁻ 0.1 - - - $0.1(1 - \alpha_{2})$ $0.1 \alpha_{2}$ $0.1 \alpha_{2}$ $K_{a_{2}} = 0.1\alpha_{2}^{2}$ $\frac{K_{a_{1}}}{K_{a_{2}}} = \frac{1}{10} \cdot \frac{\alpha_{1}^{2}}{\alpha_{2}^{2}} = \frac{1}{1000}$ $\log K_{a1} - \log K_{a2} = -3$ $pK_{a1} - pK_{a2} = 3$ 16. Ans. (A, B)
- Sol. Note : We feel option (C) is incorrect because in some type of concentration cells, salt bridge is not required. Which can be confirmed from NCERT (XII-Chemistry, Part-1) in Sub section 3.2 Galvanic Cell. "The electrolytes of the two half-cells are connected internally through a salt bridge as shown in Fig. 3.1. Sometimes, both the electrodes dip in the same electrolyte solution and in such cases we do not require a salt bridge."