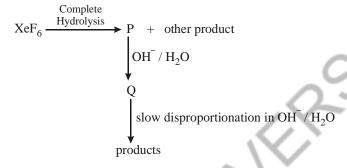
INORGANIC CHEMISTRY

p-BLOCK

1.	The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic					
	product X in 75% yield. The weight (in g) or	f X obtained is	[JEE(Advanced) 2023]			
	[Use, molar mass (g mol^{-1}): H = 1, C = 12, O = 16, Si = 28, Cl = 35.5]					
2.	Match the reactions (in the given stoichiome	etry of the reactants) in List-I w	with one of their products given			
	in List-II and choose the correct option.		[JEE(Advanced) 2023]			
	List-I	List-II				
	$(P) P_2O_3 + 3H_2O \rightarrow$	(1) $P(O)(OCH_3)Cl_2$	4			
	$(Q) P_4 + 3NaOH + 3H_2O \rightarrow$	$(2) H_3PO_3$	(),			
	(R) $PCl_5 + CH_3COOH \rightarrow$	(3) PH ₃	C .			
	(S) $H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow$	(4) POCl ₃	9			
		(5) H ₃ PO ₄				
	(A) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 5$	(B) $P \rightarrow 3$; $Q \rightarrow 5$; $R \rightarrow$	\cdot 4; S \rightarrow 2			
	(C) $P \rightarrow 5$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$	(D) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow$	$\rightarrow 4; S \rightarrow 5$			
3.	The reaction of Xe and O ₂ F ₂ gives a Xe compound P. The number of moles of HF produced					
	complete hydrolysis of 1 mol of P is		[JEE(Advanced) 2022]			
4.	The compound(s) which react(s) with NH ₃ to	o give boron nitride (BN) is(are	JEE(Advanced) 2022]			
	(A) B (B) B_2H_6	(C) B_2O_3	(D) HBF ₄			
5.	The reaction of HClO ₃ with HCl gives a para	amagnetic gas, which upon reac	etion with O ₃ produces			
	XY		[JEE(Advanced) 2022]			
	(A) Cl2O (B) ClO2	(C) Cl_2O_6	(D) Cl ₂ O ₇			
6.	The reaction Pb(NO ₃) ₂ and NaCl in water pr	ves upon the addition of HCl of				
	appropriate concentration. The dissolution of the precipitate is due to the formation of					
			[JEE(Advanced) 2022]			
	(A) PbCl2 (B) PbCl4	(C) $[PbCl_4]^{2-}$	(D) $[PbCl_6]^{2-}$			
7.	Ozonolysis of ClO ₂ produces an oxide of ch	nlorine. The average oxidation s	state of chlorine in this oxide is			
	A.		[JEE(Advanced) 2021]			
8.	With respect to hypochlorite, chlorate and po	erchlorate ions, choose the corre				
			[JEE(Advanced) 2020]			
7 _	(A) The hypochlorite ion is the strongest conjugate base.					
_	(B) The molecular shape of only chlorate ion is influenced by the lone pair of electrons of Cl.					
	(C) The hypochlorite and chlorate ions dispr		ical set of ions.			
0	(D) The hypochlorite ion oxidizes the sulfite		m			
9.	At 143 K, the reaction of XeF_4 with O_2F_2 pr	-	-			
	of electrons present on the whole molecule of	OF Y 18	[JEE(Advanced) 2019]			

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions


10.	The compound(s) which generate(s) N ₂ gas upon thermal decomposition below 300°C is (are)				
				[JEE(Advanced) 2018	
	(A) NH ₄ NO ₃	(B) $(NH_4)_2Cr_2O_7$	(C) $Ba(N_3)_2$	$(D)Mg_3N_2$	
11.	Based on the compor	ands of group 15 elements,	the correct statement(s) is	(are)	
				[JEE(Advanced) 2018	
	(A) Bi ₂ O ₅ is more ba	sic than N ₂ O ₅		7,	
	(B) NF ₃ is more cova	alent than BiF ₃			
	(C) PH ₃ boils at lower	er temperature than NH ₃			
	(D) The N–N single	bond is stronger than the P-	-P single bond		
12.	The colour of the X ₂ molecules of group 17 elements changes gradually from yellow to violet down t				
	group. This is due to	-		[JEE(Advanced) 2017	
	(A) the physical state of X_2 at room temperature changes from gas to solid down the group				
	(B) decrease in HOMO-LUMO gap down the group				
	(C) decrease in π^* - σ^* down the group				
	(D) decrease in ionization energy down the group				
		Paragraph 1	for Q.13 & Q.14		
	Upon heating $KClO_3$ in the presence of catalytic amount of MnO_2 , a gas ${\bf W}$ is formed. Excess amount of				
	W reacts with white	phosphorus to give X. The	reaction of X with pure H	NO_3 gives Y and Z .	
) `	[JEE(Advanced) 2017	
13.	W and X are, respect	tively			
	(A) O_3 and P_4O_6	(B) O_2 and P_4O_{10}	(C) O_3 and P_4O_{10}	(D) O_2 and P_4O_6	
14.	${f Y}$ and ${f Z}$ are , respectively				
	(A) N_2O_4 and H_3PO_3	(B) N_2O_4 and HPO_3	(C) N_2O_5 and HPO_3	(D) N_2O_3 and H_3PO_4	
15.	The crystalline form of borax has [JEE(Advanced) 201				
	(A) Tetranuclear $[B_4O_5(OH)_4]^{2-}$ unit				
	(B) All boron atoms in the same plane				
	(C) Equal number of sp ² and sp ³ hybridized boron atoms				
	(D) One terminal hyd	droxide per boron atom			
16.	The nitrogen contain	ing compound produced in	the reaction of HNO ₃ with	P_4O_{10}	
\	2			[JEE(Advanced) 2016	
-	(A) can also be prepared by reaction of P ₄ and HNO ₃				
	(B) is diamagnetic				
	(C) contains one N-N				
	(D) reacts with Na m	etal producing a brown gas			

- 17. Three moles of B_2H_6 are completely reacted with methanol. The number of moles of boron containing product formed is [JEE(Advanced) 2015]
- 18. Under hydrolytic conditions, the compounds used for preparation of linear polymer and for chain termination, respectively, are [JEE(Advanced) 2015]
 - (A) CH₃SiCl₃ and Si(CH₃)₄

(B) (CH₃)₂SiCl₂ and (CH₃)₃SiCl

(C) (CH₃)₂SiCl₂ and CH₃SiCl₃

- (D) SiCl₄ and (CH₃)₃SiCl
- 19. Under ambient conditions, the total number of gases released as products in the final step of the reaction scheme shown below is
 [JEE(Advanced) 2014]

(A) 0

(B) 1

(C) 2

- (D) 3
- 20. The product formed in the reaction of SOCl₂ with white phosphorous is

[JEE(Advanced) 2014]

- (A) PCl₃
- (B) SO₂Cl₂
- (C) SCl₂
- (D) POCl₃

SOLUTIONS

1. Ans. (222)

Sol.
$$4(CH_3)_2SiCl_2 + 4H_2O \xrightarrow{75\%} (CH_3)_8Si_4O_4 + 8HCl_{(X)}$$

$$w = 516g$$

$$n = \frac{516}{129}$$

$$= 4$$

% yield = 75

The weight of X (in gram) = $296 \times \frac{75}{100} = 222 \text{ g}$

2. Ans. (D)

Sol. (P)
$$P_2O_3 + 3H_2O \rightarrow 2H_3PO_3$$

(Q)
$$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$$

(R)
$$PCl_5 + CH_3COOH \rightarrow CH_3COCl + \underline{POCl_3} + HCl$$

(S)
$$H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow 4Ag + 4HNO_3 + \underline{H_3PO_4}$$

3. Ans. (2 or 4 or 6)

Sol.
$$Xe + 2O_2F_2 \rightarrow XeF_4 + 2O_2$$

$$3XeF_4 + 6H_2O \rightarrow 2Xe + XeO_3 + \frac{3}{2}O_2 + 12HF$$

∴ One mole of XeF₄ gives 4 moles of HF on hydrolysis

4. Ans. (B, C or A, B, C)

Sol. (A)
$$2B + 2NH_3 \rightarrow 2BN + 3H_2$$

Boron produced BN with ammonia but **Boron is element not compound.** So that this option not involve in answer.

$$\begin{aligned} \textbf{(B)} \ \, 3B_2H_6 + 6NH_3 \rightarrow 3[BH_2(NH_3)_2]^+[BH_4^-] & \xrightarrow{T = 200^{\circ}C} \\ B_3N_3H_6 & \xrightarrow{T > 200^{\circ}C} \\ \textbf{(BN)}_x \end{aligned}$$

(C)
$$B_2O_3(\ell) + 2NH_3 \xrightarrow{1200^{\circ}C} 2BN_{(s)} + 3H_2O_{(g)}$$

(D)
$$HBF_4 + NH_3 \rightarrow NH_4[BF_4]$$

5. Ans. (C)

Sol.
$$HClO_3 + HCl \rightarrow ClO_2 + \frac{1}{2}Cl_2 + H_2O$$

$$2ClO_2 + 2O_3 \rightarrow Cl_2O_6 + 2O_2$$

6. Ans. (C)

Sol.
$$Pb(NO_3)_2 + 2NaCl \rightarrow PbCl_2 + 2NaNO_3$$

$$\begin{vmatrix} excess \\ + Cl \end{vmatrix}$$

$$[PbCl_4]^{2-}$$

7. Ans. (6)

Sol.
$$2ClO_2 + 2O_3 \longrightarrow Cl_2O_6 + 2O_2$$

Cl₂O₆

$$2x + 6(-2) = 0$$

$$x = +6$$

Average oxidation state of Cl in Cl₂O₆ is 6.

8. Ans. (A, B, D)

Sol. Hypochlorite ion : ClO^{Θ}

Chlorate ion : ClO_3^{Θ}

Per chlorate ion : ClO₄[⊙]

(A) Acidic order: $\overset{+1}{\text{HClO}}$ < $\overset{+5}{\text{HClO}_3}$ < $\overset{+7}{\text{HClO}_4}$

Conjugate base order: $ClO^- > ClO_3^- > ClO_4^-$

(B) Hypochlorite ion (ClO^{Θ}):

:Ül – Ö: ë

Linear shape

Chlorate ion (ClO_3^{Θ}) :

Trigonal pyramidal shape

Perchlorate ion (ClO_4^{Θ}) :

Perfect tetrahedral shape due

to resonance

In chlorate ion bond angle changes due to presence of lone pair on chlorine atom. While hypochlorite ion is linear and perchlorate ion is tetrahedral and there is no effect of lone pair on hypochlorite ion.

(C) Disproportionation reaction of

(i) hypochlorite ion : $3C1O^{\Theta} \rightarrow 2C1^{-} + C1O_{3}^{\Theta}$

(ii) Chlorate ion : $4ClO_3^{\circ} \rightarrow 3ClO_4^{\Theta} + Cl^{\Theta}$

(D) $\text{ClO}^- + \text{SO}_3^{2-} \to \text{SO}_4^{2-} + \text{Cl}^{\Theta}$

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

9. Ans. (19.00)

Sol.
$$XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$$

Y has 3 lone pair of electron in each fluorine and one lone pair of electron in xenon.

Hence total lone pair of electrons is 19.

10. Ans. (B, C)

Sol. (A)
$$NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O$$

(B)
$$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 + Cr_2O_3 + 4H_2O$$

(C) Ba(N₃)₂
$$\xrightarrow{\Delta}$$
 Ba + 3N₂

(D) Mg_3N_2 (it does not decompose into N_2)

11. Ans. (A, B, C)

Sol. (A) Bi_2O_5 is metallic oxide but N_2O_5 is non metallic oxide therefore Bi_2O_5 is basic but N_2O_5 is acidic.

(B) In NF₃, N and F are non metals but BiF_3 , Bi is metal but F is non metal therefore NF₃ is more covalent than BiF_3 .

(C) In PH₃ hydrogen bonding is absent but in NH₃ hydrogen bonding is present therefore PH₃ boils at lower temperature than NH₃.

(D) Due to small size in N–N single bond l.p. – l.p. repulsion is more than P–P single bond therefore N–N single bond is weaker than the P–P single bond.

12. Ans. (B, C)

Sol. Halogens are coloured due to HOMO-LUMO transition of electrons.

$$\begin{aligned} \text{M.O.} \rightarrow F_2 = \sigma 1s^2 \,, \overset{*}{\sigma} 1s^2 \,, \, \sigma 2s^2 \,, \, \overset{*}{\sigma} 2s^2 \,, \, \sigma 2p_z^2 \,, \, \pi 2p_x^2 = \pi 2p_y^2 \,, \, \overset{*}{\pi} 2p_x^2 = \overset{*}{\pi} 2p_y^2 \,, \, \overset{*}{\sigma} 2p_z \\ \text{(configuration)} \end{aligned}$$
 filled Vacant (HOMO) (LUMO)

On moving down the group HOMO-LUMO energy gap decreases so transition of electrons become easier $^*\pi^2p$ to $^*\sigma^2p$ therefore colour intensify.

Solution for paragraph Q.13 & 14

$$2KClO_{3} \xrightarrow{MnO_{2}} 2KCl + 3O_{2}$$

$$(W)$$

$$P_{4} + 5O_{2} \longrightarrow P_{4}O_{10}$$

$$(excess)$$

$$phosphorous$$

$$(W)$$

$$P_{4}O_{10} + 4HNO_{3} \longrightarrow 2N_{2}O_{5} + (HPO_{3})_{4}$$

$$(X)$$

$$(Y)$$

$$(Z)$$

Sol. W and X are respectively

$$W = O_2$$
 and $X = P_4O_{10}$

14. Ans. (C)

Sol. Y and Z are respectively

$$Y = N_2O_5$$
 and $Z = HPO_3$

15. Ans. (A, C, D)

(A) Having [B₄O₅(OH)₄]²⁻ tetranuclear (boron) unit

(B) All boron atoms not in same plane

(C) Two boron are sp² hybridised and two boron are sp³ hybridised

(D) One terminal hydroxide per boron atom is present.

16. Ans. (B, D)

Sol.
$$P_4O_{10} + 4HNO_3 \xrightarrow{\text{dehydration of } HNO_3} 4(HPO_3) + 2N_2O_5$$
 (required product)

(A)
$$P_4 + 20HNO_3 \rightarrow 4H_3PO_4 + 20NO_2 + 4H_2O$$

(B) N₂O₅ is diamagnetic in nature

$$(C) N_2O_5 \rightarrow 0 N O$$

N₂O₅ contains one N-O-N bond not N-N bond.

(D) Na + N₂O₅
$$\rightarrow$$
 NaNO₃ + NO₂
(Brown gas)

17. Ans. (6)

Sol.
$$B_2H_6 + 6MeOH \rightarrow 2[B(OMe)_3] + 6H_2$$

1 mole of B_2H_6 is completely reacted with methanol then 2 mole of product $[B(OMe)_3]$ is formed & hence when 3 moles of B_2H_6 are completely reacted with methanol then 6 mole of product $[B(OMe)_3]$ is formed.

18. Ans. (B)

Sol. (A)
$$CH_3SiCl_3 \xrightarrow{(i) \text{ Hydrolysis}} CH_3 - Si - O - Si - O - O Cross linked polymer} - O - Si - O - Si - CH_3 CH_3 O CH_$$

 $Si(CH_3)_4 \longrightarrow NOT$ hydrolysed

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

(B)
$$(CH_3)_2 SiCl_2 \xrightarrow{(i) \text{ Hydrolysis}} \begin{bmatrix} CH_3 \\ S \\ CH_3 \end{bmatrix}_n$$
 Linear Polymer

$$(CH_3)_2SiCl_2 + (CH_3)_3SiCl$$
(linear polymer formation)
(Chain Termination)
(i) Hydrolysis
(ii) Condensation
(ii) Condensation
(iii) Condensation
(CH_3)
(CH_3

- $\begin{array}{ccc} (C) & (CH_3)_2SiCl_2 & \xrightarrow{(i) \; Hydrolysis} & linear \; polymer \; formation \\ \\ & CH_3SiCl_3 & \xrightarrow{(i) \; Hydrolysis} & Cross \; linked \; polymer \\ \end{array}$
- (D) SiCl₄ $\xrightarrow{\text{Hydrolysis}}$ H₄SiO₄ + 4HCl
- 19. Ans. (C)

Sol.
$$XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$$

(P)

$$XeO_3 + OH^- / H_2O \longrightarrow HXeO_4^-$$

$$2HXeO_4^- \longrightarrow Xe + XeO_6^{4-} + O_2 + H_2O_6^{4-}$$

(Q)

Hence, there are two gaseous products Xe and O_2 .

- 20. Ans. (A)
- Sol. $P_4 + 8SOCl_2 \longrightarrow 4PCl_3 + 4SO_2 + 2S_2Cl_2$