
PHYSICAL CHEMISTRY

CHEMICAL EQUILIBRIUM

Consider the reaction A ⇒ B at 1000 K. At time t', the temperature of the system was increased to 2000 K and the system was allowed to reach equilibrium. Throughout this experiment the partial pressure of A was maintained at 1 bar. Given below is the plot of the partial pressure of B with time. What is the ratio of the standard Gibbs energy of the reaction at 1000 K to that at 2000 K? [JEE(Advanced) 2020]

2. For the following reaction, the equilibrium constant K_c at 298 K is 1.6×10^{17} .

 $\operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{S}^{2-}(\operatorname{aq}) \rightleftharpoons \operatorname{FeS}(s)$

When equal volumes of 0.06 M $\text{Fe}^{2+}(\text{aq})$ and 0.2 M $\text{S}^{2-}(\text{aq})$ solutions are mixed, the equilibrium concentration of $\text{Fe}^{2+}(\text{aq})$ is found to be $\mathbf{Y} \times 10^{-17}$ M. The value of Y is _____. [JEE(Advanced) 2019] Consider the following reversible reaction,

 $A(g) + B(g) \rightleftharpoons AB(g)$.

3.

The activition energy of the backward reaction exceeds that of the forward reaction by 2RT (in J mol⁻¹). If the pre-exponential factor of the forward reaction is 4 times that of the reverse reaction, the absolute value of ΔG^{θ} (in J mol⁻¹) for the reaction at 300 K is____.

(Given ; $\ln (2) = 0.7$, $RT = 2500 \text{ J mol}^{-1}$ at 300 K and G is the Gibbs energy) [JEE(Advanced) 2018]

Paragraph For Question No. 4 and 5

Thermal decomposition of gaseous X_2 to gaseous X at 298 K takes place according to the following equation :

$X_2(g) \Longrightarrow 2X(g)$

The standard reaction Gibbs energy, $\Delta_r G^\circ$, of this reaction is positive. At the start of the reaction, there is one mole of X₂ and no X. As the reaction proceeds, the number of moles of X formed is given by β . Thus, $\beta_{equilibrium}$ is the number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally.

(Given : $R = 0.083 L bar K^{-1} mol^{-1}$)

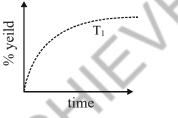
[JEE(Advanced) 2016]

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

4. The equilibrium constant K_P for this reaction at 298 K, in terms of $\beta_{equilibrium}$, is

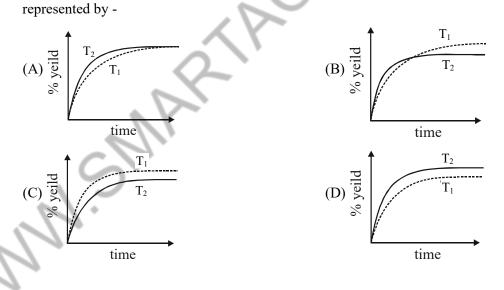
(A)
$$\frac{8\beta_{equilibrium}^2}{2 - \beta_{equilibrium}}$$
(B)
$$\frac{8\beta_{equilibrium}^2}{4 - \beta_{equilibrium}^2}$$
(C)
$$\frac{4\beta_{equilibrium}^2}{2 - \beta_{equilibrium}}$$
(D)
$$\frac{4\beta_{equilibrium}^2}{4 - \beta_{equilibrium}^2}$$

5. The INCORRECT statement among the following, for this reaction, is


(A) Decrease in the total pressure will result in formation of more moles of gaseous X

- (B) At the start of the reaction, dissociation of gaseous X2 takes place spontaneously
- (C) $\beta_{\text{equilibrium}} = 0.7$

(D)
$$K_C < 1$$


6. The % yield of ammonia as a function of time in the reaction

 $N_2(g) + 3H_2(g) \implies 2NH_3(g), \Delta H < 0$ at (P, T₁) is given below

[JEE(Advanced) 2015]

If this reaction is conducted at (P ,T₂), with $T_2 > T_1$, the % yield of ammonia as a function of time is

SOLUTIONS

1. Ans. (0.25) **Sol.** $K_{eq.} = \frac{[B]}{[A]}$ $K_{1000} = \frac{10}{1} = 10$ and $K_{2000} = \frac{100}{1} = 100$ Now, $\frac{\Delta G_{1000}^0}{\Delta G_{2000}^0} = \frac{(-RT\ell nk_{eq})_{1000}}{(-RT\ell nK_{eq})_{2000}} = \frac{1000 \times \ell n10}{2000 \times \ell n100} = 0.25$ Ans. (8.70 or 9.10) 2. $\mathrm{Fe}^{+2}_{(\mathrm{aq.})}$ + $\mathrm{S}^{-2}_{(\mathrm{aq.})}$ \rightleftharpoons Sol. FeS(s) 0.03 M 0.1 M (0.03-x) (0.1-x) \simeq y $\simeq 0.07$ $K_c >> 10^3 \implies 0.03 - x \simeq 0 \simeq y$ $\Rightarrow x = 0.03$ $K_c = 1.6 \times 10^{17} = \frac{1}{y \times 0.07}$ $y = \frac{10^{-17}}{1.6 \times 0.07} = 8.928 \times 10^{-17} = Y \times 10^{-17}$ \Rightarrow y \simeq 8.93 Ans. (8500) 3. **Sol.** $A_{(g)} + B_{(g)} \rightleftharpoons AB_{(g)}$ $E_{ab} - E_{af} = 2RT$ $\Rightarrow \Delta H = -2RT \text{ and } \frac{A_f}{A_b} = 4$ $K_{eq} = \left(\frac{K_f}{K_L}\right) = \frac{A_f e^{-E_{af}/RT}}{A_L e^{-E_{ab}/RT}} = 4(e^2)$ $\Delta G^{\circ} = -RT \ln K = -2500 \times \ln (4 \times e^2) = -8500 \text{ J/mol}$ Absolute value of $\Delta G^{\circ} = 8500 \text{ J/mol}$

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

4. Ans. (B)
Sol.
$$X_2(g) = 2X(g)$$

 $1 - \frac{\beta_{eq.}}{2} \qquad \beta_{eq.}$
 $K_P = \frac{P_X^2}{P_{X_2}} = \frac{\left(\frac{\beta_{eq.}}{1 + \frac{\beta_{eq.}}{2}}P_T\right)^2}{\left(\frac{1 - \frac{\beta_{eq.}}{2}}{1 + \frac{\beta_{eq.}}{2}}P_T\right)}$
 $K_P = \frac{\beta_{eq.}^2}{1 - \frac{\beta_{eq.}^2}{4}}P_T = \frac{2\beta_{eq.}^2}{1 - \frac{\beta_{eq.}}{4}} = \frac{8\beta_{eq.}^2}{4 - \beta_{eq.}^2}$

Sol. (A) On decreasing $P_T \left[Q = \frac{n_{x^2} P_T}{n_{x_2} n_T} \right] Q$ will be less than Kp reaction will move in forward direction

(B) At the start of the reaction $\Delta G = \Delta G^0 + RT \ln Q$

t = 0, $Q = 0 \Rightarrow \Delta_{rxn}G = -ve$ (spontaneous)

(C) if
$$\beta_{eq} = 0.7$$

 $K_p = \frac{8 \times 0.49}{4 - 0.49} = \frac{3.92}{3.51}$
 $K_p > 1$
Since it is given that
 $\Delta G^0 > 0 \implies K_p < 1$
 \therefore This is incorrect
(D) $K_p = K_C \times (RT)^{\Delta ng}$
 $K_p = K_C \times (RT)^{\Delta ng}$

$$K_{\rm C} = \frac{1}{(R \times 298)^1}$$

 $K_{C} < 1$

6. Ans. (B)

Sol. At $t = 0 \implies r_{net} = k_f [N_2] [H_2]^3 = r_f$

... % yield will increase in initial stages due to increase in net speed

As time proceeds \Rightarrow r_{net} = k_f [N₂][H₂]³ - k_b [NH₃]²

On increasing temp., kf & kb increase but increase of kb is more. so % yield will decrease

% yield will increase in initial stage due to enhance speed but as time proceeds, final yield is governed by thermodynamics due to which yield decrease since reaction is exothermic