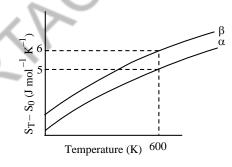

PHYSICAL CHEMISTRY

THERMODYNAMICS-II

1. In a one-litre flask, 6 moles of A undergoes the reaction A (g) \rightleftharpoons P (g). The progress of product formation at two temperatures (in Kelvin), T_1 and T_2 , is shown in the figure: [JEE(Advanced) 2023]


If $T_1 = 2T_2$ and $(\Delta G_2^{\Theta} - \Delta G_1^{\Theta}) = RT_2 \ln x$, then the value of x is _____

[ΔG_1^{Θ} and ΔG_2^{Θ} are standard Gibb's free energy change for the reaction at temperatures T_1 and T_2 , respectively.]

"Paragraph I" for Question No. 2

The entropy versus temperature plot for phases α and β at 1 bar pressure is given.

S_T and S₀ are entropies of the phases at temperatures T and 0 K, respectively.

The transition temperature for α to β phase change is 600 K and $C_{P,\beta} - C_{P,\alpha} = 1$ J mol⁻¹ K⁻¹. Assume $(C_{P,\beta} - C_{P,\alpha})$ is independent of temperature in the range of 200 to 700 K. $C_{P,\alpha}$ and $C_{P,\beta}$ are heat capacities of α and β phases, respectively. [JEE(Advanced) 2023]

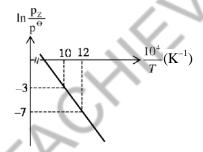

2. The value of entropy change, $S_{\beta} - S_{\alpha}$ (in J mol⁻¹ K⁻¹), at 300 K is _____.

[Use : $\ln 2 = 0.69$

Given : $S_{\beta} - S_{\alpha} = 0$ at 0 K]

"Paragraph I" for Question No. 3

The entropy versus temperature plot for phases α and β 1 bar pressure is given. S_T and S₀ are entropies of the phases at temperatures T and 0 K, respectively

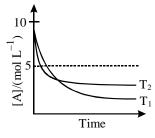


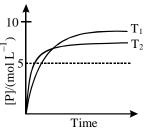
The transition temperature for α to β phase change is 600 K and $C_{P,\beta} - C_{P,\alpha} = 1 \text{J mol}^{-1}$ K⁻¹. Assume $(C_{P,\beta}-C_{P,\alpha})$ is independent of temperature in the range of 200 to 700 K. $C_{P,\alpha}$ and $C_{P,\beta}$ are heat capacities of α and β phases, respectively. [JEE(Advanced) 2023]

The value of enthalpy change, $H_{\beta} - H_{\alpha}$ (in J mol⁻¹), at 300 K is _____. **3.**

Question Stem for Question Nos. 4 and 5

For the reaction $\mathbf{X}(s) \rightleftharpoons \mathbf{Y}(s) + \mathbf{Z}(g)$, the plot of $\ln \frac{p_z}{p^{\Theta}}$ versus $\frac{10^4}{T}$ is given below (in solid line), where p_z is the pressure (in bar) of the gas **Z** at temperature *T* and $P^{\Theta} = 1$ bar.




(Given, $\frac{d(\ln K)}{d(\frac{1}{r})} = -\frac{\Delta H^{\Theta}}{R}$, where the equilibrium constant, $K = \frac{p_z}{p^{\Theta}}$ and the gas constant,

 $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

[JEE(Advanced) 2021]

- The value of standard enthalpy, ΔH^{Θ} (in kJ mol⁻¹) for the reaction is_____. 4.
- The value of ΔS^{Θ} (in J K⁻¹ mol⁻¹) for the given reaction, at 1000 K is_____. 5.
- For a reaction, $A \rightleftharpoons P$, the plots of [A] and [P] with time at temperatures T_1 and T_2 are given below. 6.

If $T_2 > T_1$, the correct statement(s) is (are)

[JEE(Advanced) 2018]

(Assume ΔH^{θ} and ΔS^{θ} are independent of temperature and ratio of lnK at T_1 to lnK at T_2 is greater than $\frac{T_2}{T_1}$. Here H, S, G and K are enthalpy, entropy, Gibbs energy and equilibrium constant, respectively.) (B) $\Delta G^{\theta} < 0$, $\Delta H^{\theta} > 0$ (C) $\Delta G^{\theta} < 0$, $\Delta S^{\theta} < 0$ (D) $\Delta G^{\theta} < 0$, $\Delta S^{\theta} > 0$

(A)
$$\Delta H^{\theta} < 0$$
, $\Delta S^{\theta} < 0$

(B)
$$\Delta G^{\theta} < 0$$
, $\Delta H^{\theta} > 0$

(C)
$$\Delta G^{\theta} < 0$$
, $\Delta S^{\theta} < 0$

(D)
$$\Delta G^{\theta} < 0$$
, $\Delta S^{\theta} > 0$

- 7. For a reaction taking place in a container in equilibrium with its surroundings, the effect of temperature on its equilibrium constant K in terms of change in entropy is described by [JEE(Advanced) 2017]
 - (A) With increase in temperature, the value of K for exothermic reaction decreases because the entropy change of the system is positive
 - (B) With increase in temperature, the value of K for endothermic reaction increases because unfavourable change in entropy of the surroundings decreases
 - (C) With increase in temperature, the value of K for exothermic reaction decreases because favourable change in entropy of the surroundings decreases
 - (D) With increase in temperature, the value of K for endothermic reaction increases because the entropy change of the system negative
- **8.** Match the thermodynamic processes given under Column-I with the expressions given under Column-II.

[JEE(Advanced) 2015]

Column-II Column-II

(A) Freezing of water at 273 K and 1 atm

- $(P) \quad q = 0$
- (B) Expansion of 1 mol of an ideal gas into a vacuum under isolated conditions
- $(Q) \quad w = 0$
- (C) Mixing of equal volumes of two ideal gases at constant
- (R) $\Delta S_{sys} < 0$
- temeprature and pressure in an isolated container
- (S) $\Delta U = 0$
- followed by reversible cooling to 300 K at 1 atm
- (T) $\Delta G = 0$

9. For the process

(D)

[JEE(Advanced) 2014]

$$H_2O(l) \rightarrow H_2O(g)$$

Reversible heating of H₂(g) at 1 atm from 300 K to 600 K

at T = 100°C and 1 atmosphere pressure, the correct choice is

- (A) $\Delta S_{system} > 0$ and $\Delta S_{surroundings} > 0$
- (B) $\Delta S_{\text{system}} > 0$ and $\Delta S_{\text{surroundings}} < 0$
- (C) $\Delta S_{system} < 0$ and $\Delta S_{surroundings} > 0$
- (D) $\Delta S_{\text{system}} < 0$ and $\Delta S_{\text{surroundings}} < 0$

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

SOLUTIONS

1. Ans. (8)

Sol. At
$$T_1$$
 K: $A(g) \rightleftharpoons P(g)$

$$t = 0$$

$$t = \infty$$
 $6 - x$ $x = 4$ (from plot)

$$\Rightarrow$$
 At T₁ K: $K_{P_1} = \frac{4}{2} = 2$

At
$$T_2$$
 K: $A(g) \rightleftharpoons P(g)$

$$t = 0$$

$$t = \infty$$
 $6 - y$ $y = 2$ (from plot)

$$\Rightarrow$$
 At T₂ K: K_{P₂} = $\frac{2}{4}$ = $\frac{1}{2}$

Now,
$$\Delta G_2^0 = -RT_2 \ln K_{P_2} = -RT_2 \ln \frac{1}{2}$$

$$\Rightarrow \Delta G_2^{\circ} = RT_2 \ln 2$$

$$\Delta G_1^o \, = - \, R T_1 \, \, ln \, \, K_{P_1}^{} \, = - \, R T_1 \, \, ln \, \, 2 = - \, 2 R T_2 \, \, ln \, \, 2$$

Given :
$$\Delta G_2^{\circ} - \Delta G_1^{\circ} = RT_2 \ln 2 + 2RT_2 \ln 2 = 3RT_2 \ln 2 = RT_2 \ln x$$

$$\Rightarrow x = 2^3 = 8$$

2. Ans. (0.30 to 0.32)

Sol. At 1 bar

$$\alpha \longrightarrow \beta$$

$$S_{\alpha(600)}^{o} = S_{\alpha(300)}^{o} + C_{P(\alpha)} \ell n \frac{600}{300}$$

$$S^{o}_{\beta(600)} = S^{o}_{\beta(300)} + C_{P(\beta)} \ell n \frac{600}{300}$$

$$S^{o}_{\beta(600)} - S^{o}_{\alpha(600)} = S^{o}_{\beta(300)} - S^{o}_{\alpha(300)} + (C_{P(\beta)} - C_{P(\alpha)}) \; \ell n \, 2$$

$$6 - 5 = S^{o}_{\beta(300)} - S^{o}_{\alpha(300)} + 1 \times \ell n \, 2$$

$$1 = S^{o}_{\beta(300)} - S^{o}_{\alpha(300)} + 0.69$$

So
$$S_{\beta(300)}^{o} - S_{\alpha(300)}^{o} = 0.31$$

3. Ans. (300.00)

Sol. As the phase transition temperature is 600 K

So at
$$600 \text{ K}$$
 $\Delta G^{\circ}_{rxn} = 0$

So
$$\Delta H^{\circ}_{\text{reaction (600)}} = T \Delta S^{\circ}_{\text{reaction (600)}}$$

$$\Delta H^{\circ}_{(600)} = 600 \times 1 = 600 \text{ Joule/mole}$$

So
$$\Delta H_{600} - \Delta H_{300} = \Delta C_P (T_2 - T_1)$$

$$\Delta H_{600}-\Delta H_{300}=1\times300$$

$$\Delta H_{300} = \Delta H_{600} - 300 = 600 - 300 = 300$$
 Joule/mole.

4. Ans. (166.28)

Sol.
$$\Delta G^{\circ} = -RT \ln \left(\frac{P}{1} \right) = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$\ln\left(\frac{P}{l}\right) = -\frac{\Delta H^{o}}{RT} + \frac{\Delta S^{o}}{R}$$

Slope =
$$-\frac{\Delta H^{\circ}}{R} = 10^4 \times \left(-\frac{4}{2}\right)$$

$$\Rightarrow \Delta H^{o} = 2 \times 10^{4} \times R$$

$$= 166.28 \text{ kJ/mole}$$

5. Ans. (141.33 or 141.34)

Sol. From the plot when, $\frac{10^4}{T} = 10$ \Rightarrow T = 1000 K

$$\ln\left(\frac{P_2}{1}\right) = -3$$

Substituting in equation:

$$\ln\left(\frac{P_2}{l}\right) = -\frac{\Delta H^o}{RT} + \frac{\Delta S^o}{R}$$

We get.

$$-3 = -\frac{2 \times 10^4 \times R}{R \times 1000} + \frac{\Delta S^{\circ}}{R}$$

$$\Rightarrow \Delta S^{o} = 17R$$

$$\Rightarrow \Delta S^{o} = 17 \times 8.314 \text{ J/K-mol}$$

$$\Rightarrow \Delta S^{o} = 141.34 \text{ J/K-mol}$$

- 6. Ans. (A, C)
- Sol. $A \rightleftharpoons P$

given
$$T_2 > T_1$$

$$\frac{\ln K_1}{\ln K_2} > \frac{T_2}{T_1}$$

$$\Rightarrow$$
 T₁ ln k₁ > T₂ ln k₂

$$\Rightarrow$$
 $-\Delta G^{\circ}_{1} > -\Delta G^{\circ}_{2}$

$$\Rightarrow (-\Delta H^{\circ} + T_1 \Delta S^{\circ}) > (-\Delta H^{\circ} + T_2 \Delta S^{\circ})$$

$$\Rightarrow T_1 \Delta S^{\circ} > T_2 \Delta S^{\circ}$$

$$\Rightarrow \Delta S^{\circ} < 0$$

7. Ans. (B, C)

Sol.
$$\Delta S_{surr.} = \frac{-q_{process}}{T_{surr}}$$

If $\Delta H>0$ on T ↑ K_{eq} ↑ , $\Delta S_{surr.}$ <0 (Surrounding is unfavourable)

If $\Delta H < 0$ on T \uparrow $K_{eq} \downarrow$, $\Delta S_{surr.} > 0$ (Surrounding is favourable)

8. Ans. (A) \rightarrow R, T; (B) \rightarrow P, Q, S; (C) \rightarrow P, Q, S; (D) \rightarrow P, Q, S, T

Sol. (A)
$$H_2O(l) \xrightarrow{1 \text{ atm}} H_2O(s)$$

$$\Delta S_{sys} < 0$$

$$\Delta U < 0$$

 $\Delta G = 0$ (At equilibrium)

(B)
$$q = 0$$
 (Isolated)

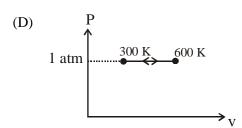
$$w = 0$$
 (Isolated)

$$\Delta S_{sys} > 0$$
 (Expansion)

$$\Delta U = q + w = 0$$

$$\Delta G = nRT ln \frac{V_1}{V_2} < 0$$

(C)
$$q = 0$$


$$\mathbf{w} = \mathbf{0}$$

 $\Delta S_{sys} > 0$ (mixing of gases)

$$\Delta U = 0$$

 $(\Delta G)_{T,P} < 0$ (Process is feasible)

$$q = 0$$
 q & w are path function but $w = 0$ same path is re-traced

$$\Delta S_{sys} = 0$$

$$\Delta U = 0$$

$$\Delta G = 0$$
S, U, G are state functiona

9. Ans. (B)

Sol. At 100°C & 1 atm vapourization of water is a reversible process, So

$$\Delta S_{Universe} = \Delta S_{system} + \Delta S_{surroundings} = 0$$

$$\Rightarrow \Delta S_{system} = -\Delta S_{surrounding}$$

During vapourization entropy of system increases

i.e.,
$$\Delta S_{system} > 0$$

i.e.,
$$\Delta S_{surrounding} < 0$$