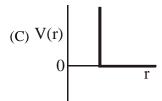
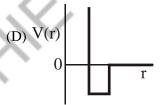
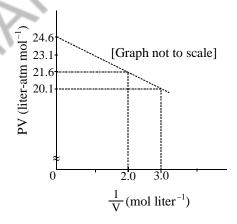

PHYSICAL CHEMISTRY


REAL GAS


- A gas has a compressibility factor of 0.5 and a molar volume of 0.4 dm³ mol⁻¹ at a temperature of 800 K and pressure \mathbf{x} atm. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be \mathbf{y} dm³ mol⁻¹. The value of \mathbf{x}/\mathbf{y} is _____. [JEE(Advanced) 2023] [Use: Gas constant, $R = 8 \times 10^{-2}$ L atm K^{-1} mol⁻¹]
- 2. One mole of a monoatomic real gas satisfied the equation p(V-b) = RT where b is a constant. The relationship of interatomic potential V(r) and interatomic distance r for the gas is given by –

[JEE(Advanced) 2015]



3. For one mole of a van der Waals gas when b=0 and T=300K, the PV vs. 1/V plot is shown below. The value of the van der Waals constant a (atm. liter² mol⁻²) is **[IIT-JEE 2012]**

(A) 1.0

(B) 4.5

(C) 1.5

(D) 3.0

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

SOLUTIONS

$$\textbf{Sol.} \quad \text{For gas}: Z=0.5, \, V_m=0.4 \, \text{L/mol}$$

$$T = 800 \text{ K}, P = X \text{ atm.}$$

$$\Rightarrow Z = \frac{PV_m}{RT}$$

$$\Rightarrow \frac{X(0.4)}{0.08 \times 800} = 0.5$$

$$\Rightarrow X = 80$$

For ideal gas, $PV_m = RT$

$$\Rightarrow$$
 $V_{m} = \frac{RT}{P} = \frac{0.08 \times 800}{80} = 0.8 \text{ L mol}^{-1} = y$

Then,
$$\frac{x}{y} = \frac{80}{0.8} = 100$$

2. Ans. (C)

Sol.
$$P(V-b) = RT$$

$$\therefore a = 0$$

Since only repulsive forces are present.

Repulsive forces contribute only at very close distance.

So potential energy increases abruptly.

$$V(r) = 0 \qquad r \rightarrow$$

3. Ans. (C)

Sol.
$$\left(P + \frac{a}{V^2}\right)(V - 0) = RT \text{ as } (n = 1)$$

$$PV = RT - \frac{a}{V}$$

On comparing slope from graph

$$-a = \frac{20.1 - 21.6}{3 - 2}$$

$$-a = \frac{-1.5}{1} = a = 1.5$$