PHYSICAL CHEMISTRY

	ATOMIC STRUCTUR	RE		
1.	For He ⁺ , a transition takes place from the orbit of radius 105.8 pm to the orbit of radius 26.45 pm.			
	The wavelength (in nm) of the emitted photon during the trans	sition is	[JEE(Advanced) 2023]	
	[Use:		_	
	Bohr radius, $a = 52.9 \text{ pm}$			
	Rydberg constant, $R_H = 2.2 \times 10^{-18} J$			
	Planck's constant, $h = 6.6 \times 10^{-34} \mathrm{J s}$			
	Speed of light, $c = 3 \times 10^8 \mathrm{m \ s}^{-1}$]			
2.	Consider a helium (He) atom that absorbs a photon of way	relength 330 nm.	The change in the velocity	
	(in cm s ⁻¹) of He atom after the photon absorption is			
	(Assume: Momentum is conserved when photon is absorbed.		· ·	
	[Use: Planck constant = 6.6×10^{-34} J s, Avogadro number = 6	$\times 10^{23} \mathrm{mol}^{-1}$, Mo	lar mass of He = 4 g mol^{-1}]	
			[JEE(Advanced) 2021]	
3.	The ground state energy of hydrogen atom is −13.6 eV. C	Consider an electi	ronic state Ψ of He ⁺ whose	
	energy, azimuthal quantum number and magnetic quantum number are -3.4 eV, 2 and 0 respectively.			
	Which of the following statement(s) is(are) true for the state	Ψ?	[JEE(Advanced) 2019]	
	(A) It has 2 angular nodes			
	(B) It has 3 radial nodes			
	(C) It is a 4d state			
	(D) The nuclear charge experienced by the electron in this s	tate is less than 2	e, where e is the magnitude	
	of the electronic charge.			
4.	Answer the following by appropriately matching the list	sts based on the	information given in the	
	paragraph.			
	Consider the Bohr's model of a one-electron atom where the electron moves around the nucleus. In the			
	following List-I contains some quantities for the n th orbit of t	he atom and List	-II contains options showing	
	how they depend on n.		[JEE(Advanced) 2019]	
	List-I	List-II		
	(I) Radius of the n th orbit	$(P) \propto n^{-2}$		
	(II) Angular momentum of the electron in the n th orbit	$(\mathbf{Q}) \propto \mathbf{n}^{-1}$		
	(III) Kinetic energy of the electron in the n th orbit	$(R) \propto n^0$		
	(IV) Potential energy of the electron in the n th orbit	$(S) \propto n^1$		
-		$(T) \propto n^2$		
		$(U) \propto n^{1/2}$		
	Which of the following options has the correct combination of	onsidering List-I	and List-II ?	

(C)(I),(T)

(A) (II), (R)

(B)(I),(P)

(D) (II), (Q)

5. Answer the following by appropriately matching the lists based on the information given in the paragraph.

Consider the Bohr's model of a one-electron atom where the electron moves around the nucleus. In the following List-I contains some quantities for the nth orbit of the atom and List-II contains options showing how they depend on n.

[JEE(Advanced) 2019]

	List-I	List-II
(I)	Radius of the n th orbit	$(P) \propto n^{-2}$
(II)	Angular momentum of the electron in the n th orbit	$(Q) \propto n^{-1}$
(III)	Kinetic energy of the electron in the n th orbit	$(R) \propto n^0$
(IV)	Potential energy of the electron in the n th orbit	$(S) \propto n^1$
		$(T) \propto n^2$
		$(U) \propto n^{1/2}$

Which of the following options has the correct combination considering List-I and List-II?

$$(A)$$
 (III) , (S)

(B) (IV), (Q)

Answer Q.6, Q.7 and Q.8 by appropriately matching the information given in the three columns of the following table.

The wave function Ψ_{n,l,m_1} is a mathematical function whose value depends upon spherical polar coordinates (r, θ, ϕ) of the electron and characterized by the quantum numbers n, l and m_1 . Here r is distance from nucleus, θ is colatitude and ϕ is azimuth. In the mathematical functions given in the Table, Z is atomic number a_0 is Bohr radius. [JEE(Advanced) 2017]

Column-1	Column-2	Column-3
(I) 1s orbital	$\psi_{\mathrm{n},l,\mathrm{m}_{1}} \propto \left(\frac{Z}{\mathrm{a}_{0}}\right)^{\frac{3}{2}} \mathrm{e}^{-\left(\frac{Z\mathrm{r}}{\mathrm{a}_{\mathrm{e}}}\right)}$	$(P) \xrightarrow{f'(x)} 0$ $r/a_0 \rightarrow$
(II) 2s orbital	(ii) One radial node	(Q Probability density at nucleus $\propto \frac{1}{a_0^3}$
(III) 2p _z orbital	$ \psi_{n, l, m_1} \propto \left(\frac{Z}{a_0}\right)^{\frac{5}{2}} re^{-\left(\frac{Zr}{2a_0}\right)} \cos \theta$	(R) Probability density is maximum at nucleus
-		(S) Energy needed to excite electron
(IV) $3d_z^2$ orbital	(iv) xy - plane is a nodal plane	from $n = 2$ state to $n = 4$ state is $\frac{27}{32}$
		times the energy needed to excite
		electron from $n = 2$ state to $n = 6$
		state

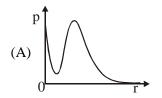
- **6.** For the given orbital in column 1, the only **CORRECT** combination for any hydrogen like species is :
 - (A) (IV) (iv) (R)

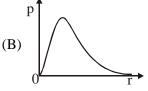
(B) (II) (ii) (P)

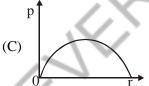
(C) (III) (iii) (P)

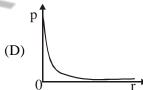
- (D) (I) (ii) (S)
- 7. For He⁺ ion, the only **INCORRECT** combination is
 - (A) (II) (ii) (Q)

(B) (I) (i) (S)


(C)(I)(i)(R)


- (D) (I) (iii) (R)
- **8.** For hydrogen atom, the only **CORRECT** combination is
 - (A)(I)(iv)(R)


(B) (I) (i) (P)


(C) (II) (i) (Q)

- (D) (I) (i) (S)
- 9. P is the probability of finding the 1s electron of hydrogen atom in a spherical shell of infinitesimal thickness, dr, at a distance r from the nucleus. The volume of this shell is $4\pi r^2 dr$. The qualitative sketch of the dependence of P on r is [JEE(Advanced) 2016]

SOLUTIONS

1. Ans. (30)

Sol. For single electron system

$$r = 52.9 \times \frac{n^2}{Z} \ pm$$

Given
$$Z = 2$$
 for He^+

$$r_2=105.8\;pm$$

So
$$105.8 = 52.9 \times \frac{n_2^2}{2}$$

$$n_2=2$$

$$r_1 = 26.45$$

So
$$26.45 = 52.9 \times \frac{n_1^2}{2}$$

$$n_1 = 1$$

So transition is from 2 to 1.

Now
$$\frac{hc}{\lambda} = R_H Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

So
$$\lambda = 30 \times 10^{-9} \text{ m} = 30 \text{ nanometer.}$$

Here 'R_H' is given in terms of energy value.

2. Ans. (30)

Sol.
$$\lambda = \frac{h}{p} \Rightarrow p = \frac{6.6 \times 10^{-34}}{330 \times 10^{-9}} = \frac{4 \times 10^{-3}}{6 \times 10^{23}} \times v \ (p = m \times v)$$

$$v=0.3\ m/s=30\ cm/s$$

Sol. #
$$-3.4 = \frac{-13.6 \times 4}{n^2}$$
 $\Rightarrow n = 4$

$$\#~\ell=2$$

$$# m = 0$$

Angular nodes =
$$\ell = 2$$

Radial nodes =
$$(n - \ell - 1) = 1$$

$$n\ell = 4d$$
 state

4. Ans. (C)

Solution for Q. No. 4 and Q. No. 5

Sol.
$$r = 0.529 \times \frac{n^2}{z}$$
 $\Rightarrow r \propto n^2$ $\Rightarrow (I) (T)$

$$mvr = \frac{nh}{2\pi}$$
 \Rightarrow $(mvr) \propto n$ \Rightarrow (II) (S)

$$KE = +13.6 \times \frac{z^2}{n^2}$$
 $\Rightarrow KE \propto n^{-2}$ $\Rightarrow (III) (P)$

$$PE = -2 \times 13.6 \times \frac{z^2}{n^2}$$
 $\Rightarrow PE \propto n^{-2}$ $\Rightarrow (IV) (P)$

6. Ans. (B)

Sol. (A) (IV) (iv) (R) \Rightarrow incorrect, because, d_{7^2} has no nodal plane.

(B) (II) (ii) (P) \Rightarrow correct, because 2s orbtial has 1 radial node.

(C) (III) (iii) (P) \Rightarrow incorrect, because probability density for 2p at nucleus is zero.

(D) (I) (ii) (S) \Rightarrow incorrect, because 1s orbital has no radial node.

7. Ans. (D)

Sol. The option (D) is incorrect because in the wave function of 1s orbital, no angular function should be present.

8. Ans. (D)

Sol. We have to select only correct combination hence, the option (D) is correct.

For 1s orbital :
$$\Psi_{n,l,m} \,\, \alpha \! \left(\frac{Z}{a_0} \right)^{\!\! 3/2} e^{\frac{-zr}{a_0}}$$

Energy needed to excite: from n = 2 to n = 4

$$\Delta E_{2-4} = 13.6 \text{ Z}^2 \times \frac{3}{16} \text{ eV}$$

Energy needed to excite from : n = 2 to n = 6

$$\Delta E_{2-6} = 13.6 \text{ Z}^2 \times \frac{8}{36}$$

$$\Delta E_{2-4} = \frac{27}{32} E_{2-6} \text{ (hence, true)}$$

9. Ans. (B)

Sol. For 1s, radial part of wave function is

$$\psi_{(r)} = 2\left(\frac{1}{a_0}\right)^{\frac{3}{2}} e^{-\frac{r}{a_0}}$$

probability of finding an e in a spherical shell of thickness, 'dr' at distance 'r' from nucleus,

$$P = \psi^2_{\,(r)} \;.\; 4\pi r^2 dr \; = 16\pi r^2 \; \left(\frac{1}{a_0}\right)^{\!\!3} e^{\frac{-2r}{a_0}} dr \label{eq:power_power}$$

So P is zero at r = 0 and $r = \infty$.