PHYSICAL CHEMISTRY

MOLE CONCEPT

The treatment of an aqueous solution of 3.74 g of Cu(NO₃)₂ with excess KI results in a brown solution along with the formation of a precipitate. Passing H₂S through this brown solution gives another precipitate X. The amount of X (in g) is _____.

[Given : Atomic mass of H = 1, N = 14, O = 16, S = 32, K = 39, Cu = 63, I = 127]

[JEE(Advanced) 2022]

- Dissolving 1.24 g of white phosphorous in boiling NaOH solution in an inert atmosphere gives a gas Q. The amount of CuSO₄ (in g) required to completely consume the gas Q is _____.
 [Given : Atomic mass of H = 1, O = 16, Na = 23, P = 31, S = 32, Cu = 63] [JEE(Advanced) 2022]
- 3. To check the principle of multiple proportions, a series of pure binary compounds (P_mQ_n) were analyzed and their composition is tabulated below. The correct option(s) is(are) [JEE(Advanced) 2022]

Compound	Weight % of P	Weight % of Q
1	50	50
2	44.4	55.6
3	40	60

- (A) If empirical formula of compound **3** is P_3Q_4 , then the empirical formula of compound **2** is P_3Q_5 .
- (B) If empirical formula of compound **3** is P_3Q_2 and atomic weight of element P is 20, then the atomic weight of Q is 45.
- (C) If empirical formula of compound 2 is PQ, then the empirical formula of the compound 1 is P_5Q_4 .
- (D) If atomic weight of P and Q are 70 and 35, respectively, then the empirical formula of compound 1 is P_2Q .

Question Stem for Question Nos. 4 and 5

Question Stem

Reaction of \mathbf{x} g of Sn with HCl quantitatively produced a salt. Entire amount of the salt reacted with \mathbf{y} g of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt (quantitatively).

(Use Molar masses (in g mol⁻¹) of H, C, N, O, Cl and Sn as 1, 12, 14, 16, 35 and 119, respectively).

[JEE(Advanced) 2021]

- **4.** The value of **x** is _____.
- 5. The value of \mathbf{y} is _____.

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

- 6. Aluminium reacts with sulfuric acid to form aluminium sulfate and hydrogen. What is the volume of hydrogen gas in liters (L) produced at 300 K and 1.0 atm pressure, when 5.4 g of aluminium and 50.0 mL of 5.0 M sulfuric acid are combined for the reaction ?
 (Use molar mass of aluminium as 27.0 g mol⁻¹, R = 0.082 atm L mol⁻¹ K⁻¹) [JEE(Advanced) 2020]
- 7. The ammonia prepared by treating ammonium sulphate with calcium hydroxide is completely used by NiCl₂.6H₂O to form a stable coordination compound. Assume that both the reactions are 100% complete. If 1584 g of ammonium sulphate and 952g of NiCl₂.6H₂O are used in the preparation, the combined weight (in grams) of gypsum and the nickel-ammonia coordination compound thus produced is ______. (Atomic weights in g mol⁻¹: H = 1, N = 14, O = 16, S = 32, Cl = 35.5, Ca = 40, Ni = 59)

[JEE(Advanced) 2018]

8. If the value of Avogadro number is $6.023 \times 10^{23} \text{ mol}^{-1}$ and the value of Boltzmann constant is $1.380 \times 10^{-23} \text{ JK}^{-1}$, then the number of significant digits in the calculated value of the universal gas constant is

[JEE(Advanced) 2014]

SOLUTIONS

1. Ans. (0.31 – 0.33) Sol. $2Cu(NO_3)_2 + 5KI \longrightarrow Cu_2I_2 + KI_3 + 4KNO_3$ 0.02 0.01 $KI_3 + H_2S \longrightarrow S \downarrow + KI + 2HI$ 0.01 0.01 $n_{\rm S} = 0.01$ mole weight of sulphur = $32 \times 0.01 = 0.32$ gm 2. Ans. (2.37 - 2.41) **Sol.** Mole of $P_4 = \frac{1.24}{31 \times 4} = 0.01$ $P_4 + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_2$ 0.01 mole 0.01 mole $2PH_3 + 3CuSO_4 \rightarrow Cu_3P_2 + 3H_2SO_4$ $0.01 \quad \frac{3}{2} \times 0.01$ $=\frac{0.03}{2}$ moles $W_{CuSO_4} = \frac{0.03}{2} \times 159 = 2.385 \text{ gm}$ Ans. = 2.38 or 2.39 3. Ans. (B, C)

Sol.

Compound	Weight % of P	Weight % of Q
1	50	50
2	44.4	55.6
3	40	60

For option (A)

Let atomic mass of P be M_P and atomic mass of Q be M_Q Molar ratio of atoms P : Q in compound 3 is

$$\frac{40}{M_{\rm P}}:\frac{60}{M_{\rm Q}}=3:4$$
$$\frac{2M_{\rm Q}}{3M_{\rm p}}=\frac{3}{4} \Longrightarrow 9M_{\rm P}=8M_{\rm Q}$$

Molar ratio of atoms P : Q in compound 2 is

$$\frac{44.4}{M_{P}}:\frac{55.6}{M_{Q}}$$

= 44.4 M_Q: 55.6 M_P
= 44.4 M_Q: 55.6 × $\frac{8M_{Q}}{9}$
= 44.4 : 55.6 × $\frac{8}{9}$ = 9 : 10

 \Rightarrow Empirical formula of compound 2 is therefore P₉Q₁₀ Option (A) in incorrect

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

For option (B)

Molar Ratio of atoms P : Q in compound 3 is $\frac{40}{M_P}: \frac{60}{M_O} = 3:2$

$$\frac{2M_Q}{3M_P} = \frac{3}{2} \Longrightarrow 9M_P = 4M_Q$$

If
$$M_P = 20 \implies M_Q = \frac{9 \times 20}{4} = 45$$

Option (B) is correct

For option (C)

Molar ratio of atoms P : Q in compound 2 is

$$\frac{44.4}{M_{p}}:\frac{55.6}{M_{Q}}=44.4M_{Q}:55.6\ M_{p}=1:1$$

$$\Rightarrow \frac{M_{P}}{M_{0}} = \frac{44.4}{55.6}$$

Molar ratio of atoms P : Q in compound 1 is

$$\frac{50}{M_{\rm P}}:\frac{50}{M_{\rm Q}}=M_{\rm Q}:M_{\rm P}$$

= 55.6 : 44.4

$$\simeq 5:4$$

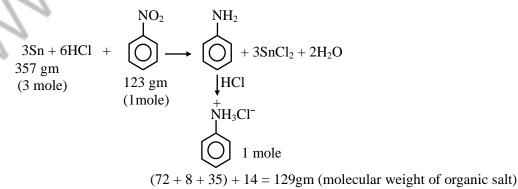
Hence, empirical formula of compound 1 is P₅Q₄

Hence, option (C) is correct

For option (D)

Molar ratio of atoms P : Q in compound 1 is

$$\frac{50}{M_{\rm p}}:\frac{50}{M_{\rm Q}}=M_{\rm Q}:M_{\rm p}$$


$$= 35:70 = 1:2$$

Hence, empirical formula of compound 1 is PQ_2

Hence, option (D) is incorrect

4. Ans. (3.57)

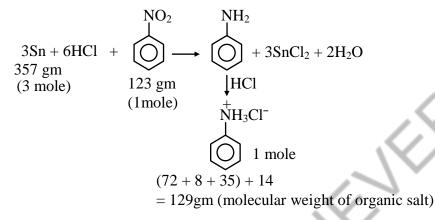
Sol. The value of **x** is

4

So to get 1.29 gm organic salt.

We have to form 0.01 mole salt.

So 0.01 mole nitrobenzene is required.


0.03 mole Sn is required.

So the amount of nitrobenzene = $0.01 \times 123 = 1.23$ gm

the amount of Sn required = $0.01 \times 357 = 3.57$ gm

5. Ans. (1.23)

Sol. The value of **y** is

So to get 1.29 gm organic salt.

We have to form 0.01 mole salt.

So 0.01 mole nitrobenzene is required.

0.03 mole Sn is required.

So the amount of nitrobenzene = $0.01 \times 123 = 1.23$ gm

the amount of Sn required = $0.01 \times 357 = 3.57$ gm

Ans. 3.57 & 1.23

- 6. Ans. (6.00 6.20)
- **Sol.** $2Al + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2$

Moles of Al takes =
$$\frac{5.4}{27} = 0.2$$

moles of H₂SO₄ taken = $\frac{50 \times 5.0}{1000} = 0.25$

As $\frac{0.2}{2} > \frac{0.25}{3}$, H₂SO₄ is limiting reagent

Now, moles of H₂ formed = $\frac{3}{3} \times 0.25 = 0.25$

$$\therefore \quad \text{Volume of H}_2 \text{ gas formed} = \frac{\text{nRT}}{\text{P}} = \frac{0.25 \times 0.082 \times 300}{1} = 6.15 \text{ L}$$

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

7. Ans. (2992)

Sol. $(NH_4)_2 SO_4 + Ca(OH)_2 \rightarrow CaSO_4.2H_2O + 2NH_3$ $\underset{=12 \text{ mol}}{1584g} ypsum (M=172) 24 \text{ mole}$

$$\operatorname{NiCl}_{2} \cdot 6H_{2}O + 6NH_{3} \rightarrow \left[\operatorname{Ni}(NH_{3})_{6}\right]Cl_{2} + 6H_{2}O$$

$$\operatorname{NiCl}_{24 \operatorname{mol}} 4 \operatorname{mol} \left[\operatorname{Ni}(NH_{3})_{6}\right]Cl_{2} + 6H_{2}O$$

Total mass = $12 \times 172 + 4 \times 232 = 2992$ g

8. Ans. (4)

Sol. Universal gas constant $R = kN_A$

where k= Boltzman constant and N_A = Avogadro number

 $\therefore \mathbf{R} = 1.380 \times 10^{-23} \times 6.023 \times 10^{23} \text{ J/K-mole}$ = 8.31174

So significant figures = 4