AOD (MONOTONICITY)

- 1. Let $S = (0, 1) \cup (1, 2) \cup (3, 4)$ and $T = \{0, 1, 2, 3\}$. Then which of the following statements is (are) true? [JEE(Advanced) 2023]
 - (A) There are infinitely many functions from S to T
 - (B) There are infinitely many strictly increasing functions from S to T
 - (C) The number of continuous functions from S to T is at most 120
 - (D) Every continuous function from S to T is differentiable
- 2. Let S be the set of all twice differentiable functions f from \mathbb{R} to \mathbb{R} such that $\frac{d^2f}{dx^2}(x) > 0$ for all $x \in (-1, 1)$. For $f \in S$, let X_f be the number of points $x \in (-1, 1)$ for which f(x) = x. Then which of the following statements is(are) true? [JEE(Advanced) 2023]
 - (A) There exists a function $f \in S$ such that $X_f = 0$
 - (B) For every function $f \in S$, we have $X_f \le 2$
 - (C) There exists a function $f \in S$ such that $X_f = 2$
 - (D) There does NOT exist any function f in S such that $X_f = \mathbf{1}$
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \frac{x^2 - 3x - 6}{x^2 + 2x + 4}$$
.

Then which of the following statements is (are) **TRUE**?

[JEE(Advanced) 2021]

- (A) f is decreasing in the interval (-2,-1)
- (B) f is increasing in the interval (1,2)

(C) f is onto

- (D) Range of f is $\left[-\frac{3}{2}, 2\right]$
- 4. For a polynomial g(x) with real coefficient, let m_g denote the number of distinct real roots of g(x). Suppose S is the set of polynomials with real coefficients defined by

$$S = \{(x^2 - 1)^2 (a_0 + a_1x + a_2x^2 + a_3x^3) : a_0, a_1, a_2, a_3 \in R\}.$$

For a polynomial f, let f' and f'' denote its first and second order derivatives, respectively. Then the minimum possible value of $(m_{f'} + m_{f''})$, where $f \in S$, is ______ [JEE(Advanced) 2020]

- 5. Let $f: \mathbb{R} \to (0,1)$ be a continuous function. Then, which of the following function(s) has(have) the value zero at some point in the interval (0, 1)? [JEE(Advanced) 2017]
 - (A) $e^x \int_0^x f(t) \sin t dt$

 $(B) x^9 - f(x)$

(C) $f(x) + \int_0^{\frac{\pi}{2}} f(t) \sin t dt$

(D) $x - \int_0^{\frac{\pi}{2} - x} f(t) \cos t dt$

Answer Q.6, Q.7 and Q.8 by appropriately matching the information given in the three columns of the following table.

Let $f(x) = x + \log_e x - x \log_e x$, $x \in (0,\infty)$.

- * Column 1 contains information about zeros of f(x), f'(x) and f''(x).
- * Column 2 contains information about the limiting behavior of f(x), f'(x) and f''(x) at infinity.
- * Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column 1 Column 2 Column 3

- f(x) = 0 for some $x \in (1,e^2)$ (I)
- (i) $\lim_{x\to\infty} f(x) = 0$
- f is increasing in (0,1)

- (II) f'(x) = 0 for some $x \in (1,e)$
- (ii) $\lim_{x\to\infty} f(x) = -\infty$
- (Q) f is decreasing in (e,e²)

- (III) f'(x) = 0 for some $x \in (0,1)$
- (iii) $\lim_{x\to\infty} f'(x) = -\infty$
- f' is increasing in (0,1)

- (IV) f''(x) = 0 for some $x \in (1,e)$
- (iv) $\lim_{x\to\infty} f''(x) = 0$
- f' is decreasing in (e,e^2) (S)
- Which of the following options is the only **CORRECT** combination? 6.
- [JEE(Advanced) 2017] (D) (II) (iii) (S)

- (A) (IV) (i) (S)
- (B) (I) (ii) (R)
- (C) (III) (iv) (P)
- [JEE(Advanced) 2017]
- Which of the following options is the only **CORRECT** combination? 7. (A) (III) (iii) (R)
 - (B) (I) (i) (P)
- (C) (IV) (iv) (S)
- (D) (II) (ii) (Q)
- 8. Which of the following options is the only **INCORRECT** combination?
- [JEE(Advanced) 2017]

- (A) (II) (iii) (P)
- (B) (II) (iv) (Q)
- (C) (I) (iii) (P)
- (D) (III) (i) (R)
- If $f: \mathbb{R} \to \mathbb{R}$ is a twice differentiable function such that f''(x) > 0 for all $x \in \mathbb{R}$, and $f\left(\frac{1}{2}\right) = \frac{1}{2}$, f(1) = 1, 9.

[JEE(Advanced) 2017]

(A) $0 < f'(1) \le \frac{1}{2}$

(C) f'(1) > 1

- 10. Let $f, g: [-1, 2] \to \mathbb{R}$ be continuous function which are twice differentiable on the interval (-1, 2). Let the values of f and g at the points -1, 0 and 2 be as given in the following table :

d		x = -1	x = 0	x = 2
	$f(\mathbf{x})$	3	6	0
100	g(x)	0	1	-1

In each of the intervals (-1, 0) and (0, 2) the function (f - 3g)" never vanishes. Then the correct statement(s) is(are) [JEE(Advanced) 2015]

- (A) f'(x) 3g'(x) = 0 has exactly three solutions in $(-1, 0) \cup (0, 2)$
- (B) f'(x) 3g'(x) = 0 has exactly one solution in (-1, 0)
- (C) f'(x) 3g'(x) = 0 has exactly one solutions in (0, 2)
- (D) f'(x) 3g'(x) = 0 has exactly two solutions in (-1, 0) and exactly two solutions in (0, 2)
- Let $a \in \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^5 5x + a$. Then
- [JEE(Advanced) 2014]

- (A) f(x) has three real roots if a > 4
- (B) f(x) has only one real roots if a > 4
- (C) f(x) has three real roots if a < -4
- (D) f(x) has three real roots if -4 < a < 4

SOLUTIONS

1. Ans. (A, C, D)

Sol.
$$S = (0, 1) \cup (1, 2) \cup (3, 4)$$

 $T = \{0, 1, 2, 3\}$

Number of functions:

Each element of S have 4 choice

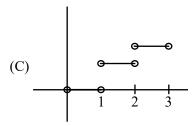
Let n be the number of element in set S.

Number of function = 4^n

Here $n \to \infty$

 \Rightarrow Option (A) is correct.

Option (B) is incorrect (obvious)



For continuous function

Each interval will have 4 choices.

⇒ Number of continuous functions

$$= 4 \times 4 \times 4 = 64$$

- \Rightarrow Option (C) is correct.
- (D) Every continuous function is piecewise constant functions
- \Rightarrow Differentiable.

Option (D) is correct.

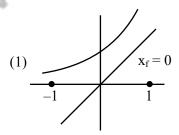
2. Ans. (A, B, C)

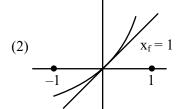
Sol. $S = Set of all twice differentiable functions <math>f: R \rightarrow R$

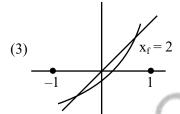
$$\frac{d^2f}{dx^2} > 0$$
 in (-1, 1)

Graph 'f' is Concave upward.

Number of solutions of $f(x) = x \rightarrow x_f$







 \Rightarrow Graph of y = f(x) can intersect graph of y= x at atmost two points \Rightarrow 0 \le x_f \le 2

3. Ans. (A, B)

Sol.
$$f(x) = \frac{x^2 - 3x - 6}{x^2 + 2x + 4}$$

$$f'(x) = \frac{(x^2 + 2x + 4)(2x - 3) - (x^2 - 3x - 6)(2x + 2)}{(x^2 + 2x + 4)^2}$$

$$f'(x) = \frac{5x(x+4)}{(x^2+2x+4)^2}$$

$$f'(x): \frac{+}{-4} \frac{-}{0} +$$

$$f(-4) = \frac{11}{6}$$
, $f(0) = -\frac{3}{2}$, $\lim_{x \to \pm \infty} f(x) = 1$

Range :
$$\left[-\frac{3}{2}, \frac{11}{6}\right]$$
, clearly f(x) is into

4. Ans. (5.00)

Sol.
$$f(x) = (x^2 - 1)^2 h(x)$$
;

$$h(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Now,
$$f(1) = f(-1) = 0$$

$$\Rightarrow f'(\alpha) = 0$$
, $\alpha \in (-1, 1)$ [Rolle's Theorem]

Also, $f'(1) = f'(-1) = 0 \Rightarrow f'(x) = 0$ has at least $3 \text{ root}, -1, \alpha, 1 \text{ with } -1 < \alpha < 1$

 \Rightarrow f''(x) = 0 will have at least 2 root, say β , γ such that

$$-1 < \beta < \alpha < \gamma < 1$$
 [Rolle's Theorem]

So,
$$min(m_{f''}) = 2$$
 and

we find
$$(m_{f'} + m_{f''}) = 5$$
 for $f(x) = (x^2 - 1)^2 h(x)$

5. Ans. (B, D)

Sol. For option (A),

Let
$$g(x) = e^x - \int_0^x f(t) \sin t dt$$

$$g'(x) = e^x - (f(x).\sin x) > 0 \ \forall \ x \in (0,1)$$

 \Rightarrow g(x) is strictly increasing function.

Also,
$$g(0) = 1$$

$$\Rightarrow$$
 g(x) > 1 \forall x \in (0,1)

∴ option (A) is not possible.

For option (B), let

$$k(x) = x^9 - f(x)$$

Now,
$$k(0) = -f(0) < 0$$
 (As $f \in (0,1)$)

Also,
$$k(1) = 1 - f(1) > 0$$
 (As $f \in (0,1)$)

$$\Rightarrow$$
 k(0). k(1) < 0

So, option(B) is correct.

For option (C), let

$$T(x) = f(x) + \int_{0}^{\frac{\pi}{2}} f(t) \cdot \sin t \, dt$$

$$\Rightarrow$$
 T(x) > 0 \forall x \in (0,1) (As $f \in$ (0,1))

so, option(C) is not possible.

For option (D),

Let
$$M(x) = x - \int_{0}^{\frac{\pi}{2} - x} f(t) \cos t dt$$

:.
$$M(0) = 0 - \int_{0}^{\pi/2} f(t) \cdot \cos t \, dt < 0$$

Also, M(1) =
$$1 - \int_{0}^{\frac{\pi}{2} - 1} f(t) \cdot \cos t dt > 0$$

$$\Rightarrow$$
 M(0). M(1) < 0

: option (D) is correct.

- 6. Ans. (D)
- 7. Ans. (D)
- 8. Ans. (D)

Sol. 6 to 8

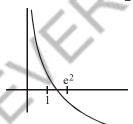
$$f(x) = x + \ell nx - x\ell nx, x > 0$$

$$f'(x) = 1 + \frac{1}{x} - \ell \, \mathbf{n} \, \mathbf{x}$$

$$f''(x) = -\frac{1}{x^2} - \frac{1}{x} = \frac{-(x+1)}{x^2}$$

- (I) $f(1) f(e^2) < 0$ so true
- (II) f'(1) f'(e) < 0 so true
- (III) Graph of f'(x) so (III) is false
- (IV) Is false

As
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x \left[1 + \frac{\ell n x}{x} - \ell n x \right] = -\infty$$



∴ (i) is false (ii) is true

$$\lim_{x \to \infty} f'(x) = -\infty$$
 so (iii) is true

 $\lim_{x \to \infty} f''(x) = 0$ so (iv) is true.

- (P) f'(x) is positive in (0,1) so true
- (Q) f'(x) < 0 for in (e,e^2) so true

As $f'(x) < 0 \forall x > 0$ therefor R is false, S is true.

Alternate:

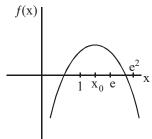
$$f(\mathbf{x}) = \mathbf{x} + \ell \mathbf{n} \mathbf{x} - \mathbf{x} \ell \mathbf{n} \mathbf{x}$$

$$f'(x) = \frac{1}{x} - \ell nx = 0 = \text{ at } x = x_0 \text{ where}$$

 $x_0 \in (1,e)$

$$f''(x) = -\frac{1}{x^2} - \frac{1}{x} < 0 \ \forall \ x > 0$$

 $\Rightarrow f(x)$ concave down



- 9. Ans. (C)
- **Sol.** Using LMVT on f(x) for $x \in \left[\frac{1}{2}, 1\right]$

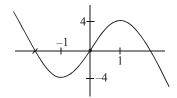
$$\frac{f(1) - f\left(\frac{1}{2}\right)}{1 - \frac{1}{2}} = f'(c), \text{ where } c \in \left(\frac{1}{2}, 1\right)$$

$$\frac{1-\frac{1}{2}}{\frac{1}{2}} = f'(c) \Rightarrow f'(c) = 1, \text{ where } c \in \left(\frac{1}{2}, 1\right)$$

- f'(x) is an increasing function $\forall x \in R$
- :. f'(1) > 1
- 10. Ans. (B, C)
- **Sol.** Let F(x) = f(x) 3g(x)
 - \therefore F(-1) = 3; F(0) = 3 & F(2) = 3
 - \therefore F'(x) will vanish at least twice in $(-1,0) \cup (0,2)$
 - $: F''(x) > 0 \text{ or } < 0 \ \forall \ x \in (-1,0) \cup (0,2)$

So there will be exactly 9 solution in (-1,0) and one in (0,2)

- 11. Ans. (B, D)
- Sol.



- $f(x) = x^5 5x + a$
- $\therefore a = 5x x^5$
- \therefore f(x) has only

one real root if

- a > 4 or a < -4
- f(x) has three real roots
- if -4 < a < 4