HYPERBOLA

1. Consider the hyperbola

$$\frac{x^2}{100} - \frac{y^2}{64} = 1$$

with foci at S and S₁, where S lies on the positive x-axis. Let P be a point on the hyperbola, in the first quadrant. Let \angle SPS₁ = α , with $\alpha < \frac{\pi}{2}$. The straight line passing through the point S and having the same slope as that of the tangent at P to the hyperbola, intersects the straight line S₁P at P₁. Let δ be the distance of P from the straight line SP₁, and $\beta = S_1P$. Then the greatest integer less than or equal to $\frac{\beta\delta}{9}\sin\frac{\alpha}{2}$ is _____. [JEE(Advanced) 2022]

2. Let a and b be positive real numbers such that a > 1 and b < a. Let P be a point in the first quadrant that lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Suppose the tangent to the hyperbola at P passes through the point (1,0), and suppose the normal to the hyperbola at P cuts off equal intercepts on the coordinate axes. Let Δ denote the area of the triangle formed by the tangent at P, the normal at P and the x-axis. If e denotes the eccentricity of the hyperbola, then which of the following statements is/are TRUE ?

(A)
$$1 < e < \sqrt{2}$$
 (B) $\sqrt{2} < e < 2$ (C) $\Delta = a^4$ (D) $\Delta = b^4$

3. Let H : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where a > b > 0, be a hyperbola in the xy-plane whose conjugate axis LM subtends

an angle of 60° at one of its vertices N. Let the area of the triangle LMN be $4\sqrt{3}$.

					[JEE(Advanced) 2018]
		LIST-I	Δ		LIST-II
	Р.	The length of the cor	njugate axis of H is		1. 8
	Q.	The eccentricity of H	I is		2. $\frac{4}{\sqrt{3}}$
	R.	The distance betwee	n the foci of H is		3. $\frac{2}{\sqrt{3}}$
	S.	The length of the latu	is rectum of H is		4. 4
	The	correct option is :			
~	(A)	$P \rightarrow 4; Q \rightarrow 2, R \rightarrow$	$1; S \rightarrow 3$		
Λ	(B)	$P \rightarrow 4; Q \rightarrow 3; R \rightarrow$	1; S \rightarrow 2		
_	(C)	$P \rightarrow 4; Q \rightarrow 1, R \rightarrow$	$3; S \rightarrow 2$		
6	(D)	$P \rightarrow 3; Q \rightarrow 4; R \rightarrow$	$2; S \rightarrow 1$		
•	If 2	x - y + 1 = 0 is tange	ent to the hyperbola $\frac{x^2}{a^2}$ -	$\frac{y^2}{16} = 1$, then which of the	e following CANNOT be sides
	of a	right angled triangle	?		[JEE(Advanced) 2017]
	(A)	2a, 4, 1	(B) 2a, 8, 1	(C) a, 4, 1	(D) a, 4, 2

[JEE(Advanced) 2020]

MATCHING TYPE : (Q.5 to Q.7)

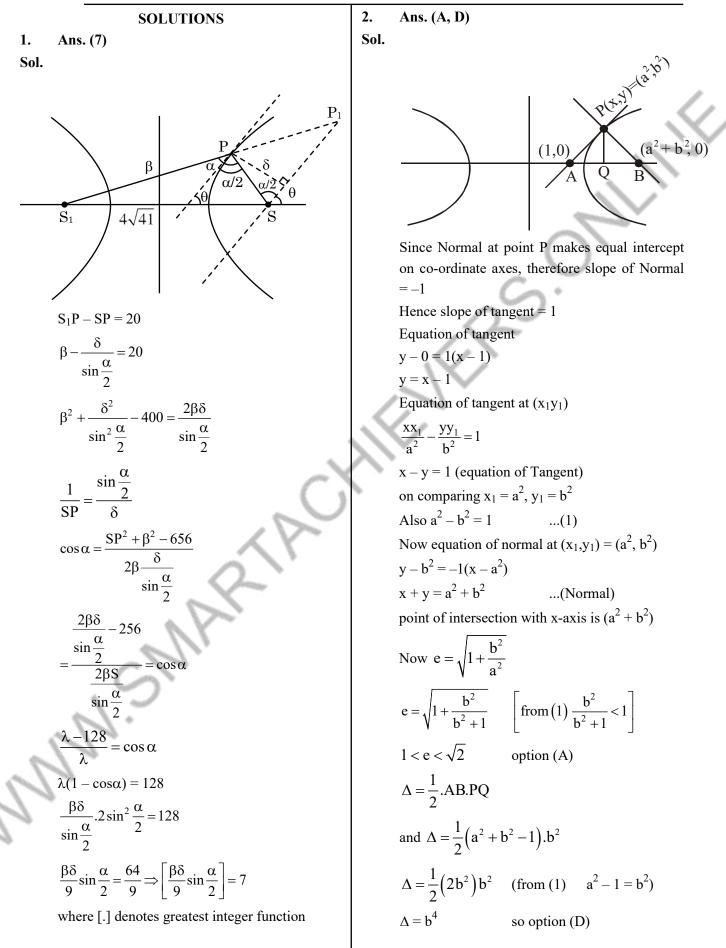
Column 1, 2 and 3 contain conics, equation of tangents to the conics and points of contact, respectively.

Column-1	Column-2	Column-3					
$(I) x^2 + y^2 = a^2$	(i) $my = m^2x + a$	(P) $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$					
(II) $x^2 + a^2y^2 = a^2$	(ii) $y = mx + a\sqrt{m^2 + d^2}$	$(Q)\left(\frac{-ma}{\sqrt{m^2+1}},\frac{a}{\sqrt{m^2+1}}\right)$					
(III) $y^2 = 4ax$	(iii) $y = mx + \sqrt{a^2m^2} - \frac{1}{2}m^2$	-1 (R) $\left(\frac{-a^2m}{\sqrt{a^2m^2+1}}, \frac{1}{\sqrt{a^2m^2}}\right)$	+1)				
(IV) $x^2 - a^2 y^2 = a^2$	$(iv) y = mx + \sqrt{a^2 m^2} + $	(S) $\left(\frac{-a^2m}{\sqrt{a^2m^2-1}}, \frac{-a^2m}{\sqrt{a^2m^2}}\right)$	$\left(\frac{1}{n^2-1}\right)$				
The tangent to a suitable conic (Column 1) at $\left(\sqrt{3},\frac{1}{2}\right)$ is found to be $\sqrt{3}x + 2y = 4$, then which of the							
following options is the onl	ly CORRECT combination	? [JEE(Advan	ced) 2017]				
$(A) (II) (iii) (R) \qquad (I$	B) $(IV) (iv) (S)$ (C)	(IV) (iii) (S) (D) (II) (iv) (R)					
If a tangent to a suitable conic (Column 1) is found to be $y = x + 8$ and its point of contact is (8,16), then							
which of the following opti	ions is the only CORRECT	combination ? [JEE(Advan	ced) 2017]				
(A) (III) (i) (P)	(B)	(III) (ii) (Q)					
(C) (II) (iv) (R)	(D)	(I) (ii) (Q)					
For $a = \sqrt{2}$, if a tangent is drawn to a suitable conic (Column 1) at the point of contact (-1,1), then which							
of the following options is the only CORRECT combination for obtaining its equation ?							
	V~	[JEE(Advar	1ced) 2017]				

(A) (II) (ii) (Q)	(B) (III) (i) (P)
(C) (I) (i) (P)	(D) (I) (ii) (Q)

8. Consider the hyperbola $H : x^2 - y^2 = 1$ and a circle S with center N(x₂, 0). Suppose that H and S touch each other at a point P(x₁, y₁) with x₁ > 1 and y₁ > 0. The common tangent to H and S at P intersects the x-axis at point M. If (*l*, m) is the centroid of the triangle Δ PMN, then the correct expression(s) is(are)

[JEE(Advanced) 2015]


(A)
$$\frac{dl}{dx_1} = 1 - \frac{1}{3x_1^2}$$
 for $x_1 > 1$
(B) $\frac{dm}{dx_1} = \frac{x_1}{3(\sqrt{x_1^2 - 1})}$ for $x_1 > 1$
(C) $\frac{dl}{dx_1} = 1 + \frac{1}{3x_1^2}$ for $x_1 > 1$
(D) $\frac{dm}{dy_1} = \frac{1}{3}$ for $y_1 > 0$

5.

6.

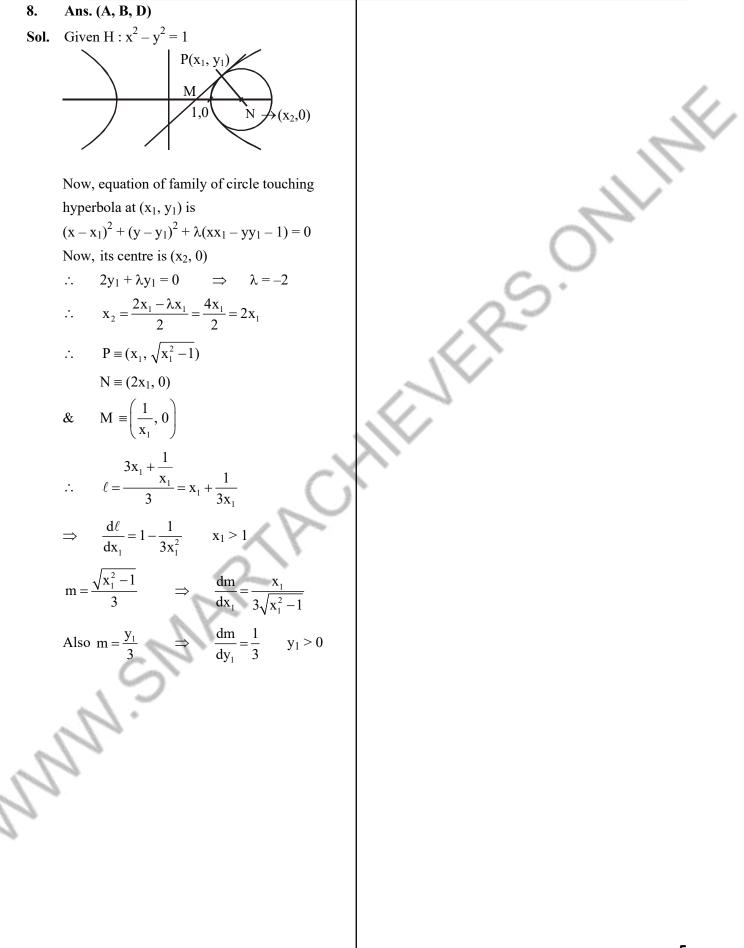
7.

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

For option (A), sides are $\sqrt{17}$, 4,1 $(\Rightarrow$ Right angled triangle) For option (B), sides are $\sqrt{17}$, 8, 1 $(\Rightarrow$ Triangle is not possible) For option (C), sides are $\frac{\sqrt{17}}{2}$, 4,1 $(\Rightarrow$ Triangle is not possible) For option (D), sides are $\frac{\sqrt{17}}{2}$, 4, 2 $(\Rightarrow$ Triangle exist but not right angled) Ans. (D) $P\left(\sqrt{3},\frac{1}{2}\right)$; tangent $\sqrt{3}x + 2y = 4$ Sol. $\Rightarrow (\sqrt{3})x + 4(\frac{1}{2})y = 4$ comparing with (II) \Rightarrow a = 2 \therefore y = mx + $\sqrt{a^2m^2 + 1}$ is tangent for $m = -\frac{\sqrt{3}}{2}$ i.e (ii) \therefore point of contact for a = 2, m = $-\frac{\sqrt{3}}{2}$ is R Ans. (A) y = x + 8 is tangent $\Rightarrow m = 1$; P(8, 16) Sol. Comparing tangent with (i) of column 2, m = 1satisfied and a = 8 obtained which matches for

7. Ans. (D)


column 1.

5.

6.

For $a = \sqrt{2}$ and point (-1,1) only I of column-1 Sol. satisfies. Hence equaiton of tangent is -x + y = 2or $y = x + 2 \implies m = 1$ which matches with (ii) of column-2 and also with Q of column-3 Let $f(x) = x + \log_e x - x \log_e x, x \in (0,\infty)$.

point of contact (P) of column 3 and (III) of

