CIRCLE

- 1. Let C_1 be the circle of radius 1 with center at the origin. Let C_2 be the circle of radius r with center at the point A = (4, 1), where 1 < r < 3. Two distinct common tangents PQ and ST of C_1 and C_2 are drawn. The tangent PQ touches C_1 at P and C_2 at Q. The tangent ST touches C_1 at S and C_2 at T. Mid points of the line segments PQ and ST are joined to form a line which meets the x-axis at a point B. If $AB = \sqrt{5}$, then the value of r^2 is [JEE(Advanced) 2023]
- 2. Let ABC be the triangle with AB = 1, AC = 3 and $\angle BAC = \frac{\pi}{2}$. If a circle of radius r > 0 touches the sides

AB, AC and also touches internally the circumcircle of the triangle ABC, then the value of r is

[JEE(Advanced) 2022]

3. Let G be a circle of radius R > 0. Let G₁, G₂,...,G_n be n circles of equal radius r > 0. Suppose each of the n circles G₁, G₂, ..., G_n touches the circle G externally. Also, for i = 1, 2,..., n–1, the circle G_i touches G_{i+1} externally, and G_n touches G₁ externally. Then, which of the following statements is/are TRUE ?

[JEE(Advanced) 2022]

- (A) If n = 4, then $(\sqrt{2} 1)r < R$ (B) If n = 5, then r < R
- (C) If n = 8, then $(\sqrt{2} 1)$ r < R
- (D) If n = 12, then $\sqrt{2} (\sqrt{3} + 1) r > R$
- 4. Consider a triangle Δ whose two sides lie on the x-axis and the line x + y + 1 = 0. If the orthocenter of Δ is (1, 1), then the equation of the circle passing through the vertices of the triangle Δ is

[JEE(Advanced) 2021]

(A) $x^2 + y^2 - 3x + y = 0$	2.	(B) $x^2 + y^2 + x + 3y = 0$
(C) $x^2 + y^2 + 2y - 1 = 0$	XY	(D) $x^2 + y^2 + x + y = 0$

Paragraph for Question No. 5 and 6

Let

$$\mathbf{M} = \{ (\mathbf{x}, \mathbf{y}) \in \mathbb{R} \times \mathbb{R} : \mathbf{x}^2 + \mathbf{y}^2 \le \mathbf{r}^2 \},\$$

where r > 0. Consider the geometric progression $a_n = \frac{1}{2^{n-1}}$, n = 1, 2, 3, Let $S_0 = 0$ and, for $n \ge 1$, let S_n denote the sum of the first n terms of this progression. For $n \ge 1$, let C_n denote the circle with center $(S_{n-1}, 0)$ and radius a_n , and D_n denote the circle with center (S_{n-1}, S_{n-1}) and radius a_n .

5. Consider M with $r = \frac{1025}{513}$. Let k be the number of all those circles C_n that are inside M. Let *l* be the

maximum possible number of circles among these k circles such that no two circles intersect. Then

[JEE(Advanced) 2021]

(A) k + 2l = 22 (B) 2k + l = 26 (C) 2k + 3l = 34 (D) 3k + 2l = 40

6. Consider M with $r = \frac{(2^{199} - 1)\sqrt{2}}{2^{198}}$. The number of all those circles D_n that are inside M is

[JEE(Advanced) 2021]

(A) 198 (B) 199 (C) 200 (D) 201

7. Let O be the centre of the circle $x^2 + y^2 = r^2$, where $r > \frac{\sqrt{5}}{2}$. Suppose PQ is a chord of this circle and the equation of the line passing through P and Q is 2x + 4y = 5. If the centre of the circumcircle of the triangle OPQ lies on the line x + 2y = 4, then the value of r is _____ [JEE(Advanced) 2020]

8. A line y = mx + 1 intersects the circle $(x - 3)^2 + (y + 2)^2 = 25$ at the points P and Q. If the midpoint of the line segment PQ has x-coordinate $-\frac{3}{5}$, then which one of the following options is correct?

[JEE(Advanced) 2019]

- $(A) \ 6 \le m < 8 \qquad \qquad (B) \ 2 \le m < 4 \qquad \qquad (C) \ 4 \le m < 6 \qquad \qquad (D) \ -3 \le m < -1$
- 9. Let the point B be the reflection of the point A(2, 3) with respect to the line 8x 6y 23 = 0. Let Γ_A and Γ_B be circles of radii 2 and 1 with centres A and B respectively. Let T be a common tangent to the circles Γ_A and Γ_B such that both the circles are on the same side of T. If C is the point of intersection of T and the line passing through A and B, then the length of the line segment AC is _____

[JEE(Advanced) 2019]

10. Answer the following by appropriately matching the lists based on the information given in the paragraph

Let the circles $C_1 : x^2 + y^2 = 9$ and $C_2 : (x-3)^2 + (y-4)^2 = 16$, intersect at the points X and Y. Suppose that another circle $C_3 : (x-h)^2 + (y-k)^2 = r^2$ satisfies the following conditions :

- (i) centre of C_3 is collinear with the centres of C_1 and C_2
- (ii) C₁ and C₂ both lie inside C₃, and
- (iii) C_3 touches C_1 at M and C_2 at N.

Let the line through X and Y intersect C₃ at Z and W, and let a common tangent of C₁ and C₃ be a tangent to the parabola $x^2 = 8\alpha y$.

There are some expression given in the List-I whose values are given in List-II below:

[JEE(Advanced) 2019]

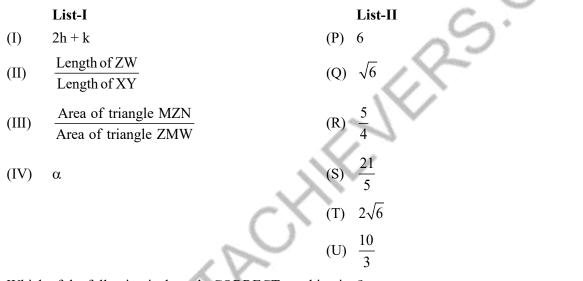
	List-I		List-II
			L181-11
(I)	2h + k	(P)	6
(II)	Length of ZW Length of XY	(Q)	$\sqrt{6}$
(III)	Area of triangle MZN Area of triangle ZMW	(R)	$\frac{5}{4}$
(IV)	α	(S)	
2		(T)	$2\sqrt{6}$
		(U)	$\frac{10}{3}$
Which	of the following is the only INCORRECT con	nbina	tion ?
Option	s :		

(A) (IV), (S) (B) (IV), (U) (C) (III), (R) (D) (I), (P)

11. Answer the following by appropriately matching the lists based on the information given in the paragraph.

Let the circles $C_1 : x^2 + y^2 = 9$ and $C_2 : (x-3)^2 + (y-4)^2 = 16$, intersect at the points X and Y. Suppose that another circle $C_3 : (x-h)^2 + (y-k)^2 = r^2$ satisfies the following conditions :

(i) centre of C_3 is collinear with the centres of C_1 and C_2


(ii) C₁ and C₂ both lie inside C₃, and

(iii) C_3 touches C_1 at M and C_2 at N.

Let the line through X and Y intersect C₃ at Z and W, and let a common tangent of C₁ and C₃ be a tangent to the parabola $x^2 = 8\alpha y$.

There are some expression given in the List-I whose values are given in List-II below:

[JEE(Advanced) 2019]

Which of the following is the only CORRECT combination? Options :

(A) (II), (T) (B) (I), (S) (C) (I), (U) (D) (II), (Q)

Paragraph for Question No. 12 and 13

Let S be the circle in the xy-plane defined by the equation $x^2 + y^2 = 4$

12. Let E_1E_2 and F_1F_2 be the chord of S passing through the point $P_0(1, 1)$ and parallel to the x-axis and the y-axis, respectively. Let G_1G_2 be the chord of S passing through P_0 and having slop -1. Let the tangents to S at E_1 and E_2 meet at E_3 , the tangents of S at F_1 and F_2 meet at F_3 , and the tangents to S at G_1 and G_2 meet at G_3 . Then, the points E_3 , F_3 and G_3 lie on the curve [JEE(Advanced) 2018]

(A) x + y = 4(B) $(x - 4)^2 + (y - 4)^2 = 16$ (D) xy = 4

13. Let P be a point on the circle S with both coordinates being positive. Let the tangent to S at P intersect the coordinate axes at the points M and N. Then, the mid-point of the line segment MN must lie on the curve-

[JEE(Advanced) 2018]

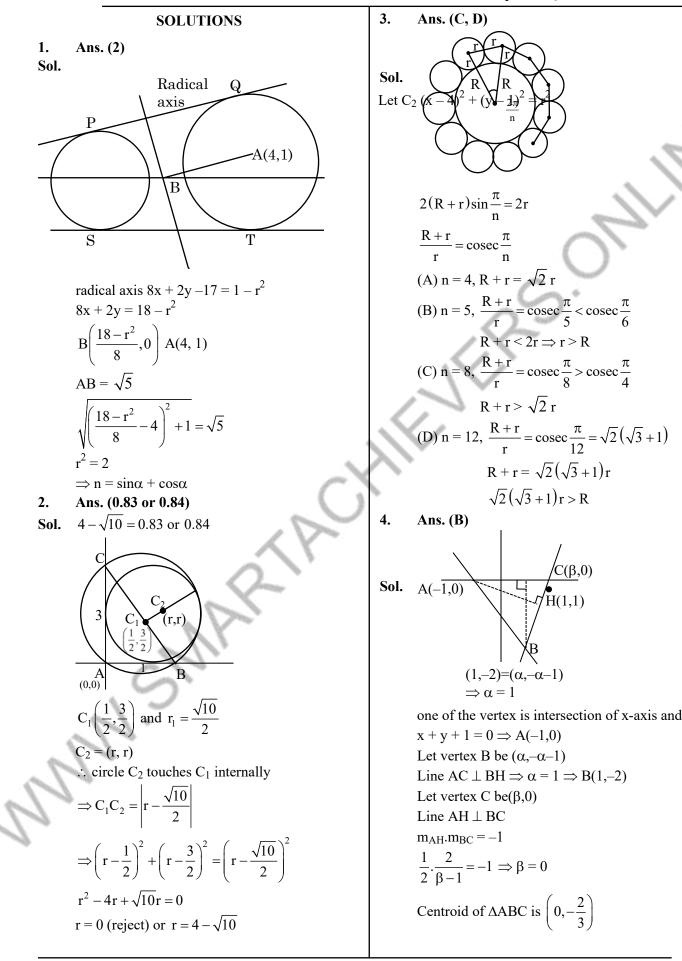
(A) $(x + y)^2 = 3xy$ (B) $x^{2/3} + y^{2/3} = 2^{4/3}$ (C) $x^2 + y^2 = 2xy$ (D) $x^2 + y^2 = x^2y^2$

- 14. Let T be the line passing through the points P(-2, 7) and Q(2, -5). Let F₁ be the set of all pairs of circles (S₁, S₂) such that T is tangents to S₁ at P and tangent to S₂ at Q, and also such that S₁ and S₂ touch each other at a point, say, M. Let E₁ be the set representing the locus of M as the pair (S₁, S₂) varies in F₁. Let the set of all straight line segments joining a pair of distinct points of E₁ and passing through the point R(1, 1) be F₂. Let E₂ be the set of the mid-points of the line segments in the set F₂. Then, which of the following statement(s) is (are) TRUE ?
 - (A) The point (-2, 7) lies in E₁ (B) The point $\left(\frac{4}{5}, \frac{7}{5}\right)$ does **NOT** lie in E₂ (C) The point $\left(\frac{1}{2}, 1\right)$ lies in E₂ (D) The point $\left(0, \frac{3}{2}\right)$ does **NOT** lie in E₁
- 15. For how many values of p, the circle $x^2 + y^2 + 2x + 4y p = 0$ and the coordinate axes have exactly three common points ? [JEE(Advanced) 2017]
- 16. The circle C_1 : $x^2 + y^2 = 3$, with centre at O, intersects the parabola $x^2 = 2y$ at the point P in the first quadrant. Let the tangent to the circle C_1 at P touches other two circles C_2 and C_3 at R_2 and R_3 , respectively. Suppose C_2 and C_3 have equal radii $2\sqrt{3}$ and centres Q_2 and Q_3 , respectively. If Q_2 and Q_3 lie on the y-axis, then-[JEE(Advanced) 2016]

(A)
$$Q_2Q_3 = 12$$
 (B) $R_2R_3 = 4\sqrt{6}$

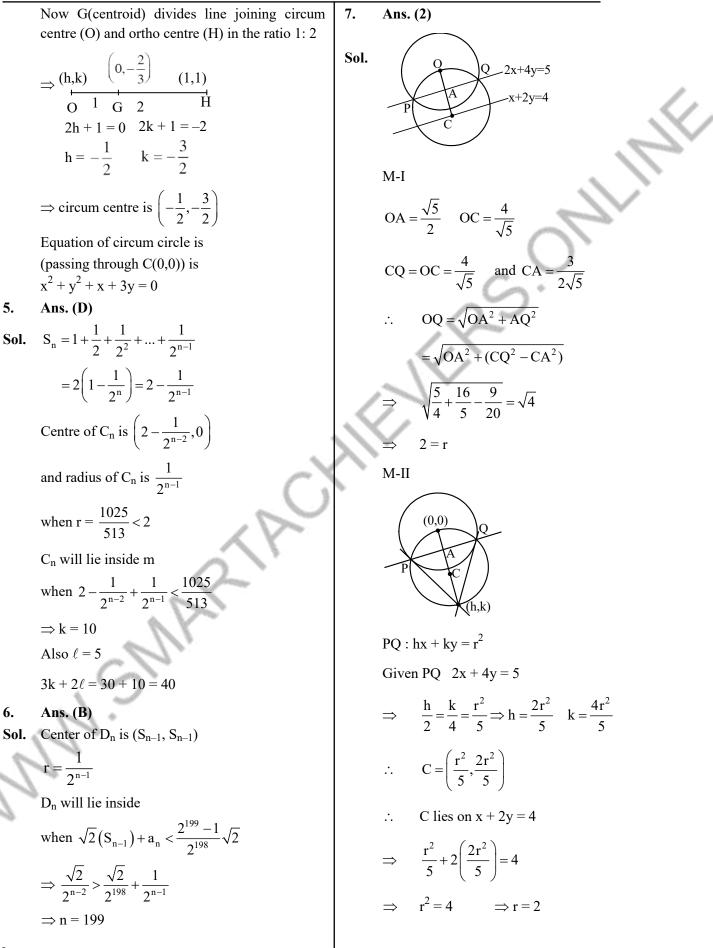
(C) area of the triangle
$$OR_2R_3$$
 is $6\sqrt{2}$ (D) area of the triangle PQ_2Q_3 is $4\sqrt{2}$

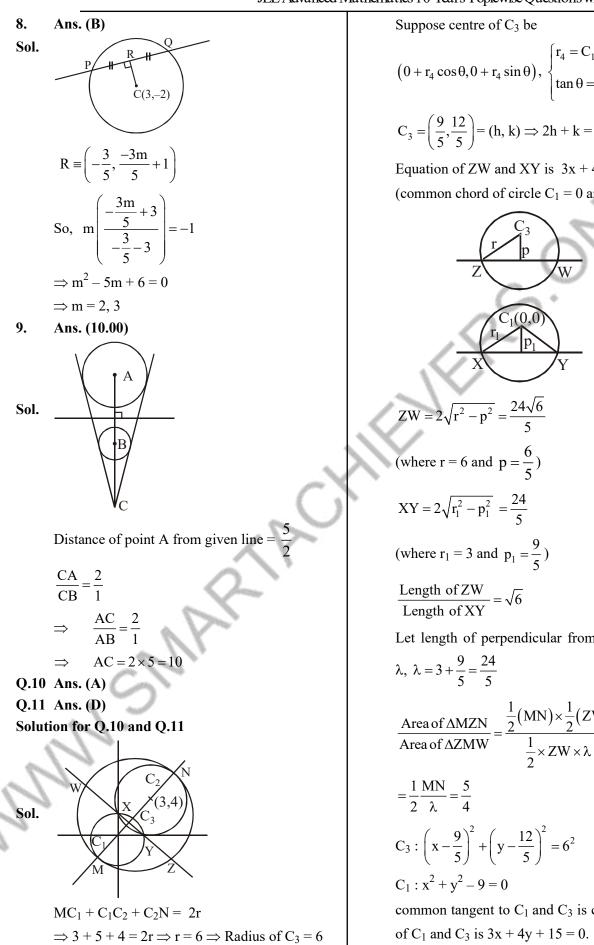
17. Let RS be the diameter of the circle x² + y² = 1, where S is the point (1,0). Let P be a variable point (other than R and S) on the circle and tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersects a line drawn through Q parallel to RS at point E. then the locus of E passes through the point(s) [JEE(Advanced) 2016]


(A)
$$\left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right)$$

(B) $\left(\frac{1}{4}, \frac{1}{2}\right)$
(C) $\left(\frac{1}{3}, -\frac{1}{\sqrt{3}}\right)$
(D) $\left(\frac{1}{4}, -\frac{1}{2}\right)$

18. A circle S passes through the point (0, 1) and is orthogonal to the circles $(x - 1)^2 + y^2 = 16$ and $x^2 + y^2 = 1$. Then :- [JEE(Advanced) 2014] (A) radius of S is 8 (B) radius of S is 7


(C) centre of S is (-7, 1) (D) centre is S is (-8, 1)


4

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

Suppose centre of C₃ be

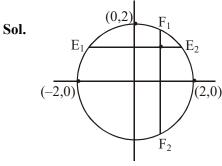
$$\left(0 + r_4 \cos \theta, 0 + r_4 \sin \theta\right), \begin{cases} r_4 = C_1 C_3 = 3\\ \tan \theta = \frac{4}{3} \end{cases}$$

$$C_3 = \left(\frac{9}{5}, \frac{12}{5}\right) = (h, k) \Rightarrow 2h + k = 6$$
Equation of ZW and XY is $3x + 4y - 9 = 0$
(common chord of circle $C_1 = 0$ and $C_2 = 0$)

$$\left(\begin{array}{c} \hline & C_1 \\ \hline & P_1 \\ \hline & P_1 \\ \hline & Y \end{array}\right)$$

$$ZW = 2\sqrt{r^2 - p^2} = \frac{24\sqrt{6}}{5}$$
(where $r = 6$ and $p = \frac{6}{5}$)

$$XY = 2\sqrt{r_1^2 - p_1^2} = \frac{24}{5}$$
(where $r_1 = 3$ and $p_1 = \frac{9}{5}$)

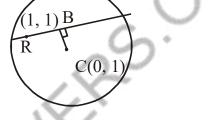

$$\frac{\text{Length of } ZW}{\text{Length of } XY} = \sqrt{6}$$
Let length of perpendicular from M to ZW be
 $\lambda, \lambda = 3 + \frac{9}{5} = \frac{24}{5}$
(MN) $\times \frac{1}{2}(MN) \times \frac{1}{2}(ZW)$

common tangent to C_1 and C_3 is common chord of C_1 and C_3 is 3x + 4y + 15 = 0.

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

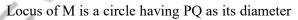
Now
$$3x + 4y + 15 = 0$$
 is tangent to parabola
 $x^2 = 8\alpha y.$
 $x^2 = 8\alpha \left(\frac{-3x - 15}{4}\right) \Rightarrow 4x^2 + 24\alpha x + 120\alpha = 0$
 $D = 0 \Rightarrow \alpha = \frac{10}{2}$

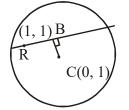
12. Ans. (A)



co-ordinates of E_1 and E_2 are obtained by solving y = 1 and $x^2 + y^2 = 4$

$$\therefore \qquad \mathrm{E}_1\left(-\sqrt{3},1\right) \text{ and } \mathrm{E}_2\left(\sqrt{3},1\right)$$


co-ordinates of F1 and F2 are obtained by solving x = 1 and $x^2 + y^2 = 4$ $F_1(1,\sqrt{3})$ and $F_2(1,-\sqrt{3})$ Tangent at $E_1: -\sqrt{3}x + y = 4$ Tangent at E₂: $\sqrt{3}x + y = 4$ ÷. $E_3(0, 4)$ Tangent at $F_1: x + \sqrt{3}y = 4$ Tangent at $F_2: x - \sqrt{3}y = 4$ ÷. $F_{3}(4, 0)$ and similarly $G_3(2, 2)$ (0, 4), (4, 0) and (2, 2) lies on x + y = 4Ans. (D) N $P(2\cos\theta, 2\sin\theta)$


Tangent at P(2cos θ , 2sin θ) is xcos θ + ysin θ = 2 M(2sec θ , 0) and N(0, 2cosec θ) Let midpoint be (h, k) h = sec θ , k = cosec θ $\frac{1}{h^2} + \frac{1}{k^2} = 1$ $\frac{1}{x^2} + \frac{1}{y^2} = 1$ Ans. (B, D)

$$AP = AQ = AM$$

14.

Hence, $E_1 : (x - 2) (x + 2) + (y - 7)(y + 5) = 0$ and $x \neq \pm 2$

Locus of B (midpoint)

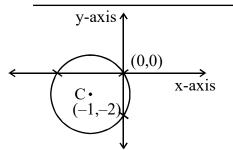
is a circle having RC as its diameter

 $E_2: x(x-1) + (y-1)^2 = 0$

Now, after checking the options, we get (D)

The points $\left(\frac{4}{5}, \frac{7}{5}\right)$, (1, 1), (-2, 7) are collinear

therefore (B) option is also correct.


15. Ans. (2)

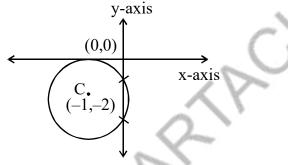
Sol. We shall consider 3 cases.

Case I : When p = 0(i.e. circle passes through origin) Now, equation of circle becomes $x^{2} + y^{2} + 2x + 4y = 0$

13.

Sol.

Case II : When circle intersects x-axis at 2 distinct points and touches y-axis


Now
$$(g^2 - c) > 0$$
 & $f^2 - c = 0$
 $\Rightarrow 1 - (-p) > 0$ & $4 - (-p) = 0$
 $\Rightarrow p = -4$
 $\Rightarrow p > -1$

 \therefore Not possible.

Case III : When circle intersects y-axis at 2 distinct points & touches x-axis.

Now,
$$g^2 - c = 0$$
 & $f^2 - c > 0$
 $\Rightarrow 1 - (-p) = 0$ & $4 - (-p) > 0$
 $\Rightarrow p = -1$ $\Rightarrow p > -4$

 \therefore p = -1 is possible.

:. Finally we conclude that p = 0, -1 \Rightarrow Two possible values of p.

16. Ans. (A, B, C)

- **Sol.** On solving $x^2 + y^2 = 3$ and
 - $x^2 = 2y$ we get point $P(\sqrt{2}, 1)$

Equation of tangent at P

$$\sqrt{2} \cdot \mathbf{x} + \mathbf{y} = 3$$

Let Q_2 be (0,k) and radius is $2\sqrt{3}$

$$\therefore \left| \frac{\sqrt{2}(0) + k - 3}{\sqrt{2 + 1}} \right| = 2\sqrt{3}$$

$$\therefore k = 9, -3$$

$$Q_2(0,9) \text{ and } Q_3(0, -3)$$

hence $Q_2Q_3 = 12$

 R_2R_3 is internal common tangent of circle C_2 and C_3

$$\therefore R_2 R_3 = \sqrt{(Q_2 Q_3)^2 - (2\sqrt{3} + 2\sqrt{3})^2}$$
$$= \sqrt{12^2 - 48} = \sqrt{96} = 4\sqrt{6}$$

Perpendicular distance of origin O from R_2R_3 is equal to radius of circle $C_1 = \sqrt{3}$

Hence area of ΔOR_2R_3

Ans. (A, C)

17.

$$=\frac{1}{2} \times (R_2 R_3) \sqrt{3} = \frac{1}{2} \cdot 4\sqrt{6} \cdot \sqrt{3} = 6\sqrt{2}$$

Perpendicular Distance of P from $Q_2Q_3 = \sqrt{2}$

$$\therefore \text{ Area of } \Delta PQ_2Q_3 = \frac{1}{2} \times 12 \times \sqrt{2} = 6\sqrt{2}$$

Sol.
$$(\cos\theta, \sin\theta)$$

 $y=1$
 Q
 $E(h,k)$
 $S(1,0)$

Tangent at P : $x \cos\theta + y \sin\theta = 1$ (i) Tangent at S : x = 1(ii) \therefore By (i) & (ii) : Q $\left(1, \frac{1 - \cos\theta}{\sin\theta}\right)$

Line through Q parallel to RS :

$$y = \frac{1 - \cos \theta}{\sin \theta} \Rightarrow y = \tan \frac{\theta}{2}$$
(iii)

Normal at P:

$$y = \frac{\sin \theta}{\cos \theta} x \Longrightarrow y = \tan \theta . x$$
(iv)

Point of intersection of equation (iii) and (iv),

E:
$$h = \frac{1 - \tan^2 \frac{\theta}{2}}{2}; k = \tan \frac{\theta}{2}$$

eliminating θ : $h = \frac{1 - k^2}{2} \Rightarrow y^2 = 1 - 2x$
Options (A) and (C) satisfies the locus.

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

18. Ans. (B,C)
Sol. Let circle is
$$x^2 + y^2 + 2gx + 2fy + c = 0$$

Put (0,1) $1 + 2f + c = 0$ (1)
orthogonal with
 $x^2 - y^2 - 2x - 15 = 0$
 $2g(-1) c - 15 \Rightarrow c = 15 - 2g$ (2)
orthogonal with
 $x^2 - y^2 - 1 = 0$
 $c = 1$ (3)
 $\Rightarrow g = 7 \& f - 1$
centre is $(-g, -f) = (-7, 1)$
radius $= \sqrt{g^2 + f^2 - c} = \sqrt{49 + 1 - 1} = 7$