DETERMINANT

1.	Let α , β and γ be real numbers. consider the following system of linear equations							
	•	z + z = 7		[JEE(Advanced) 2023]				
	$x + \alpha z$				/			
		$\mathbf{y} + \beta \mathbf{z} = \gamma$			1.			
	Match	each entry in List-I to the correct entries in List-II.						
		List-I	List		ð.			
	(P) If	$\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has	(1)	a unique solution				
	(Q) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the system has		(2)	(2) no solution				
	(R) If	$\beta \neq \frac{1}{2}$ (7 α – 3) where $\alpha = 1$ and $\gamma \neq 28$,	infinitely many solutions					
	the	en the system has		6.				
	(S) If $\beta \neq \frac{1}{2}$ (7 α - 3) where $\alpha = 1$ and $\gamma = 28$,		(4)	(4) $x = 11$, $y = -2$ and $z = 0$ as a solution				
	then the system has							
		(5) $x = -15$, $y = 4$ and $z = 0$ as a solution						
	The correct option is :							
	(A) (P) \rightarrow (3) (Q) \rightarrow (2) (R) \rightarrow (1) (S) \rightarrow (4) (B) (P) \rightarrow (3) (Q) \rightarrow (2) (R) \rightarrow (5) (S) \rightarrow (4) (C) (P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5) (D) (P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (1) (S) \rightarrow (3) Let <i>p</i> , <i>q</i> , <i>r</i> be nonzero real numbers that are, respectively, the 10 th , 100 th and 1000 th terms of a harmonic							
-								
2.								
	progression. Consider the system of linear equations [JEE(Advanced) 2022]							
	$\mathbf{x} + \mathbf{y} + \mathbf{z} = 1$							
	10x + 100y + 1000z = 0							
	qr x + pr y + pq z = 0.							
	List-I			List-II				
	(I)	If $\frac{q}{r} = 10$, then the system of linear equations has	(P)	x = 0, y = $\frac{10}{9}$, z = $-\frac{1}{9}$ as a solution				
	(II)	If $\frac{p}{r} \neq 100$, then the system of linear equations has	(Q)	$x = \frac{10}{9}, y = -\frac{1}{9}, z = 0$ as a solution				
	(III)	If $\frac{p}{q} \neq 10$, then the system of linear equations has	(R)	infinitely many solutions				
			1					

(IV)	If $\frac{p}{q} = 10$, then the system of linear equations has	(S)	no solution
		(T)	at least one solution

The correct option is:

 $(A) (I) \rightarrow (T); (II) \rightarrow (R); (III) \rightarrow (S); (IV) \rightarrow (T)$

- (B) (I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (S); (IV) \rightarrow (R)
- $(C) (I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (P); (IV) \rightarrow (R)$
- (D) (I) \rightarrow (T); (II) \rightarrow (S); (III) \rightarrow (P); (IV) \rightarrow (T)

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

		1 (
3.	The total number	of distinct $x \in R$ for whic	$\begin{array}{c ccccc} x & x^2 & 1+x^3 \\ 2x & 4x^2 & 1+8x^3 \\ 3x & 9x^2 & 1+27x \end{array}$	3 = 10 is	[JEE(Advanced) 2016]
4.	Which of the foll	owing values of α satisfy	the equation $\begin{vmatrix} (1+\alpha)^2 \\ (2+\alpha) \\ (3+\alpha)^2 \end{vmatrix}$		~ \'
	(A) -4	(B) 9	(C) –9	([JEE(Advanced) 2015] (D) 4
				C	5.
				18-	
			- D		
			$-\gamma_{\mu\nu}$		
		AX	0		
		MARTA			
		Un.			
	NS				
5	2				
2					

SOLUTIONS Ans. (A) 1. **Sol.** Given x + 2y + z = 7 (1) $x + \alpha z = 11$ (2) $2x - 3y + \beta z = \gamma$ (3) Now, $\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 0 & \alpha \\ 2 & -3 & \beta \end{vmatrix} = 7\alpha - 2\beta - 3$ \therefore if $\beta = \frac{1}{2}(7\alpha - 3)$ $\Rightarrow \Delta = 0$ Now, $\Delta_{\mathbf{x}} = \begin{vmatrix} 7 & 2 & 1 \\ 11 & 0 & \alpha \\ \gamma & -3 & \beta \end{vmatrix}$ $=21\alpha - 22\beta + 2\alpha\gamma - 33$ \therefore if $\gamma = 28$ $\Rightarrow \Delta_x = 0$ $\Delta_{\mathbf{y}} = \begin{vmatrix} 1 & 7 & 1 \\ 1 & 11 & \alpha \\ 2 & \gamma & \beta \end{vmatrix}$ $\Delta_v = 4\beta + 14\alpha - \alpha\gamma + \gamma - 22$ \therefore if $\gamma = 28$ $\Rightarrow \Delta_v = 0$ Now, $\Delta_z = \begin{vmatrix} 1 & 2 & 7 \\ 1 & 0 & 11 \\ 2 & -3 & \gamma \end{vmatrix} = 56 - 2\gamma$ If $\gamma = 28$ $\Rightarrow \Delta_z = 0$ \therefore if $\gamma = 28$ and $\beta = \frac{1}{2}(7\alpha - 3)$ \Rightarrow system has infinite solution and if $\gamma \neq 28$ \Rightarrow system has no solution \Rightarrow P \rightarrow (3); Q \rightarrow (2) Now if $\beta \neq \frac{1}{2}(7\alpha - 3)$ $\Rightarrow \Delta \neq 0$ and for $\alpha = 1$ clearly

y = -2 is always be the solution \therefore if $\gamma \neq 28$ System has a unique solution if $\gamma = 28$ \Rightarrow x = 11, y = -2 and z = 0 will be one of the solution $\therefore R \rightarrow 1; S \rightarrow 4$.: option 'A' is correct 2. Ans. (B) **Sol.** If $\frac{q}{r} = 10 \Rightarrow A = D \Rightarrow D_x = D_y = D_z = 0$ So, there are infinitely many solutions Look of infinitely many solutions can be given as x + y + z = 1& 10x + 100y + 1000z = 0 \Rightarrow x + 10y + 100z = 0 Let $z = \lambda$ then $x + y = 1 - \lambda$ and $x + 10y = -100\lambda$ \Rightarrow x = $\frac{10}{9}$ + 10 λ ; y = $\frac{-1}{9}$ - 11 λ i.e., $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \equiv \left(\frac{10}{9} + 10\lambda, \frac{-1}{9} - 11\lambda, \lambda\right)$ $Q\left(\frac{10}{9}, \frac{-1}{9}, 0\right)$ valid for $\lambda = 0$ $P\left(0, \frac{10}{q}, \frac{-1}{q}\right)$ not valid for any λ . $(I) \rightarrow Q, R, T$ (II) If $\frac{p}{r} \neq 100$, then $D_y \neq 0$ So no solution $(II) \rightarrow (S)$ (III) If $\frac{p}{q} \neq 10$, then $D_z \neq 0$ so, no solution $(III) \rightarrow (S)$ (IV) If $\frac{p}{q} = 10 \implies D_z = 0 \implies D_x = D_y = 0$ so infinitely many solution $(IV) \rightarrow Q, R, T$

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

3. Ans. (2)
Sol.
$$x' \begin{vmatrix} 1 & 1 & 1 + x^{2} \\ 2 & 4 & 1 + 8x^{4} \\ 3 & 9 & 1 + 27x^{2} \end{vmatrix} = 10$$

 $\Rightarrow x' \begin{vmatrix} 1 & 1 & 1 \\ 3 & 9 & 1 + 27x^{2} \end{vmatrix} = 10$
 $\Rightarrow x' (25 - 23) - 6x^{6} \cdot 2 = 10$
 $\Rightarrow 6x^{6} + x^{2} - 5 = 0$
 $\Rightarrow x^{3} - \frac{5}{6} - 1$
two real solutions
4. Ans. (B, C)
Sol. $\begin{vmatrix} 1 & \alpha & \alpha^{2} \\ 4 & 2\alpha & \alpha^{2} \end{vmatrix} = \frac{1}{4} + \frac{1}{9} \end{vmatrix} = -648\alpha$
 $\Rightarrow \frac{1}{9} - \frac{1}{3} + \frac{1}{1} \begin{vmatrix} 1 & 1 \\ 4 & 2 \end{vmatrix} = -648\alpha$
 $\Rightarrow \alpha^{3} - 648\alpha$
 $\Rightarrow \alpha^{3} - 81\alpha$
 $\therefore \alpha = 0.9, -9$