QUADRATIC EQUATION

1. For $x \in \mathbb{R}$, then number of real roots of the equation $3x^2 - 4|x^2 - 1| + x - 1 = 0$ is _____.

[JEE(Advanced) 2022]

Suppose a, b denote the distinct real roots of the quadratic polynomial x² + 20x - 2020 and suppose c, d denote the distinct complex roots of the quadratic polynomial x² - 20x + 2020. Then the value of ac(a - c) + ad(a - d) + bc(b - c) + bd(b - d) is [JEE(Advanced) 2020]

Paragraph for Question No. 3 and 4

Let p,q be integers and let α , β be the roots of the equation, $x^2 - x - 1 = 0$, where $\alpha \neq \beta$. For $n = 0, 1, 2, ..., let a_n = p\alpha^n + q\beta^n$.

FACT : If a and b are rational numbers and $a + b\sqrt{5} = 0$, then a = 0 = b.

- 3. If $a_4 = 28$, then p + 2q =
 - (A) 14 (B) 7 (C) 12
- **4.** $a_{12} =$

(A)
$$2a_{11} + a_{10}$$
 (B) $a_{11} - a_{10}$

5. Let $-\frac{\pi}{6} < \theta < -\frac{\pi}{12}$. Suppose α_1 and β_1 are the roots of the equation $x^2 - 2x\sec\theta + 1 = 0$ and α_2 and β_2 are the roots of the equation $x^2 + 2x\tan\theta - 1 = 0$. If $\alpha_1 > \beta_1$ and $\alpha_2 > \beta_2$, then $\alpha_1 + \beta_2$ equals

(C) $a_{11} + a_{10}$

[JEE(Advanced) 2016]

[JEE(Advanced) 2017]

[JEE(Advanced) 2017]

(D) 21

(D) $a_{11} + 2a_{10}$

(A)
$$2(\sec\theta - \tan\theta)$$
 (B) $2\sec\theta$ (C) $-2\tan\theta$ (D) 0

6. Let S be the set of all non-zero numbers α such that the quadratic equation $\alpha x^2 - x + \alpha = 0$ has two distinct real roots x_1 and x_2 satisfying the inequality $|x_1 - x_2| < 1$. Which of the following intervals is(are) a subset(s) of S? [JEE(Advanced) 2015]

$$(A)\left(-\frac{1}{2},-\frac{1}{\sqrt{5}}\right) \qquad (B)\left(-\frac{1}{\sqrt{5}},0\right) \qquad (C)\left(0,\frac{1}{\sqrt{5}}\right) \qquad (D)\left(\frac{1}{\sqrt{5}},\frac{1}{2}\right)$$

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

SOLUTIONS
1. Ans. (4)
Sol.
$$3x^2 + x - 1 = 4 |x^2 - 1|$$

If $x \in [-1, 1]$,
 $3x^2 + x - 1 = -4x^2 + 4 \Rightarrow 7x^2 + x - 5 = 0$
 $3x^2 + x - 1 = -4x^2 + 4 \Rightarrow 7x^2 + x - 5 = 0$
 $3x^2 + x - 1 = 4x^2 - 4 \Rightarrow x^2 - x - 3 = 0$
Say $g(x) = x^2 - x - 3$
 $g(-1) = -1; g(1) = -3$
[Two Roots]
So total 4 roots.
2. Ans. (D)
Sol. $x^2 + 20x - 2020 = 0$ has two roots $a, b \in \mathbb{R}$
 $x^2 - 20x + 2020 = 0$ has two roots $a, b \in \mathbb{R}$
 $x^2 - 20x + 2020 = 0$ has two roots $c, d \in \text{complex}$
 $ac (a - c) + ad (a - d) + bc (b - c) + bd (b - d)$
 $= a^2c - ac^2 + a^2d - ad^2 + b^2c - bc^2 + b^2d - bd^2$
 $= a^2 (c + d) + b^2 (c + d) - c^2 (a + b) - d^2 (a + b)$
 $= (c + d) (a^2 + b^2) - (a + b) (c^2 + d^2)$
 $= (c + d) ((a + b)^2 - 2ab) - (a + b) ((c + d)^2 - 2cd)$
 $= 20 [(20)^2 + 4040 + (20)^2 - 4040]$
 $= 20 [(20)^2 + 4040 + (20)^2 - 4040]$
 $= 20 [(20)^2 + 4040 + (20)^2 - 4040]$
 $= 20 (20)^2 + 4040 + (20)^2 - 4040]$
 $= 20 \times 800 = 16000$
3. Ans. (C)
Sol. $\alpha^2 = \alpha + 1 \Rightarrow \alpha^4 = 3\alpha + 2$
 $\therefore a_4 = 28 \Rightarrow p\alpha^4 + q\beta^4 = p(3\alpha + 2) + q(3\beta + 2)$
 $= 28$
 $\Rightarrow p(3\alpha + 2) + q(3 - 3\alpha + 2) = 28$
 $\Rightarrow p(3\alpha + 2) + q(3 - 3\alpha + 2) = 28$
 $\Rightarrow p(3\alpha + 2) + q(3 - 3\alpha + 2) = 28$
 $\Rightarrow p(3\alpha + 2) + q(3 - 3\alpha + 2) = 28$
 $\Rightarrow p(3\alpha + 2) + q(3 - 3\alpha + 2) = 28$
 $\Rightarrow p(3\alpha + 2) + q(3 - 3\alpha + 2) = 28$
 $\Rightarrow p(3\alpha + 2) + q(3 - 3\alpha + 2) = 28$

4. Ans. (C)
Sol.
$$\alpha^2 = \alpha + 1 \Rightarrow \alpha^n = \alpha^{n-1} + \alpha^{n-2}$$

 $\Rightarrow p\alpha^n + q\beta^n = p(\alpha^{n-1} + \alpha^{n-2}) + q(\beta^{n-1} + \beta^{n-2})$
 $a_n = a_{n-1} + a_{n-2}$
 $\Rightarrow a_{12} = a_{11} + a_{10}$
5. Ans. (C)
Sol. $\alpha_1 = \frac{2 \sec \theta + \sqrt{4 \sec^2 \theta - 4}}{2}$ { $\because \alpha_2 > \beta_2$ }
 $\alpha_1 = \sec \theta + |\tan \theta|$ { $\because \alpha_1 > \beta_1$ }
 $\beta_2 = -\tan \theta - \sec \theta$
 $\alpha_1 = \sec \theta - \tan \theta$ ($\because \theta \in \left(-\frac{\pi}{6}, -\frac{\pi}{12}\right)$)
 $\alpha_1 + \beta_2 = -2\tan \theta$
6. Ans. (A, D)
Sol. $\alpha x^2 - x + \alpha = 0$
 $D = 1 - 4\alpha^2$
distinct real roots $D > 0$
 $\Rightarrow \alpha \in \left(-\frac{1}{2}, \frac{1}{2}\right)$...(i)
given $|x_1 - x_2| < 1$
 $\Rightarrow \frac{\sqrt{1-4\alpha^2}}{|\alpha|} < 1$
 $\Rightarrow 1 - 4\alpha^2 < \alpha^2$
 $\Rightarrow \alpha \in \left(-\infty, -\frac{-1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right) ...(ii)$
from (i) & (ii)
 $\alpha \in \left(-\frac{1}{2}, \frac{-1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

2