INDEFINITE INTEGRATION

1. Let b be a nonzero real number. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function such that f(0) = 1. If the

derivative f' of f satisfies the equation $f'(x) = \frac{f(x)}{b^2 + x^2}$ for all $x \in \mathbb{R}$, then which of the following

statements is/are TRUE ?

(A) If b > 0, then f is an increasing function

[JEE(Advanced) 2020] (B) If b < 0, then f is a decreasing function

(C) f(x) f(-x) = 1 for all $x \in \mathbb{R}$

(D) f(x) - f(-x) = 0 for all $x \in \mathbb{R}$

MARTACHIENER

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

	SOLUTIONS	
1.	Ans. (A, C)	
Sol.	$f'(\mathbf{x}) = \frac{f(\mathbf{x})}{\mathbf{b}^2 + \mathbf{x}^2}$	
	$\int \frac{f'(x)}{f(x)} dx = \int \frac{dx}{x^2 + b^2}$	
	$\Rightarrow \ln \left f(\mathbf{x}) \right = \frac{1}{b} \tan^{-1} \left(\frac{\mathbf{x}}{b} \right) + \mathbf{c}$	
	Now $f(0) = 1$	S.
	$\therefore c = 0$	
	$\therefore \left f(\mathbf{x}) \right = e^{\frac{1}{b} \tan^{-1} \left(\frac{\mathbf{x}}{b} \right)}$	S.
	$\Rightarrow f(\mathbf{x}) = \pm e^{\frac{1}{b}\tan^{-1}\left(\frac{\mathbf{x}}{b}\right)}$	18-
	since $f(0) = 1$	
	$\therefore f(\mathbf{x}) = e^{\frac{1}{b}\tan^{-1}\left(\frac{\mathbf{x}}{b}\right)}$	
	$x \rightarrow -x$	
	$f\left(-\mathbf{x}\right) = e^{-\frac{1}{b}\tan^{-1}\left(\frac{\mathbf{x}}{b}\right)}$	\bigcirc
	$\therefore f(\mathbf{x}).f(-\mathbf{x}) = \mathbf{e}^0 = 1 \text{(option C)}$	°
	and for $b > 0$	
	$f(\mathbf{x}) = e^{\frac{1}{b}\tan^{-1}\left(\frac{\mathbf{x}}{b}\right)}$	
	$\Rightarrow f(\mathbf{x})$ is increasing for all $\mathbf{x} \in \mathbf{R}$ (option A)	
	SMM	
	N.	
	0	
2		
7	5	
-		
2 -		

~