WAVE ON STRING

- 2. Answer the following by appropriately matching the lists based on the information given in the paragraph.

A musical instrument is made using four different metal strings, 1, 2, 3 and 4 with mass per unit length μ , 2 μ , 3 μ and 4 μ respectively. The instrument is played by vibrating the strings by varying the free length in between the range L₀ and 2L₀. It is found that in string-1 (μ) at free length L₀ and tension T₀ the fundamental mode frequency is f₀.

List-I gives the above four strings while list-II the magnitude of some quantity.

List-i	List-II
(I) String-1(μ)	(P) 1
(II) String-2 (2µ)	(Q) 1/2
(III) String-3 (3µ)	(R) $1/\sqrt{2}$
(IV) String-4 (4µ)	(S) $1/\sqrt{3}$
	(T) 3/16
	(ID 1/16

If the tension in each string is T_0 , the correct match for the highest fundamental frequency in f_0 units will be, **JEE(Advanced) 2019**

(A) $I \rightarrow P$, $II \rightarrow R$, $III \rightarrow S$, $IV \rightarrow Q$

(B) $I \rightarrow P$, $II \rightarrow Q$, $III \rightarrow T$, $IV \rightarrow S$

(C) $I \rightarrow Q$, $II \rightarrow S$, $III \rightarrow R$, $IV \rightarrow P$

3. Answer the following by appropriately matching the lists based on the information given in the paragraph.

A musical instrument is made using four different metal strings, 1, 2, 3 and 4 with mass per unit length μ , 2μ , 3μ and 4μ respectively. The instrument is played by vibrating the strings by varying the free length in between the range L₀ and 2L₀. It is found that in string-1 (μ) at free length L₀ and tension T₀ the fundamental mode frequency is f₀.

List-I gives the above four strings while list-II lists the magnitude of some quantity.

List-I	List-II
(I) String-1(µ)	(P) 1
(II) String-2 (2µ)	(Q) 1/2
(III) String-3 (3µ)	(R) $1/\sqrt{2}$
(IV) String-4 (4 μ)	(S) $1/\sqrt{3}$
	(T) 3/16
	(U) 1/16

The length of the string 1, 2, 3 and 4 are kept fixed at $L_0, \frac{3L_0}{2}, \frac{5L_0}{4}$ and $\frac{7L_0}{4}$, respectively. Strings 1, 2, 3 and 4 are vibrated at their 1st, 3rd, 5th and 14th harmonics, respectively such that all the strings have same frequency. The correct match for the tension in the four strings in the units of T₀ will be.

[JEE(Advanced) 2019]

$(A) I \rightarrow P, II \rightarrow Q, III \rightarrow T, IV \rightarrow U$	(B) $I \rightarrow T$, $II \rightarrow Q$, $III \rightarrow R$, $IV \rightarrow U$
(C) $I \rightarrow P$, $II \rightarrow Q$, $III \rightarrow R$, $IV \rightarrow T$	(D) $I \rightarrow P$, $II \rightarrow R$, $III \rightarrow T$, $IV \rightarrow U$

4. A block M hangs vertically at the bottom end of a uniform rope of constant mass per unit length. The top end of the rope is attached to a fixed rigid support at O. A transverse wave pulse (Pulse 1) of wavelength λ_0 is produced at point O on the rope. The pulse takes time T_{OA} to reach point A. If the wave pulse of wavelength λ_0 is produced at point A (Pulse 2) without disturbing the position of M it takes time T_{AO} to reach point O. Which of the following options is/are **correct** ? [JEE(Advanced) 2017]

(A) The time $T_{AO} = T_{OA}$

- (B) The velocities of the two pulses (Pulse 1 and Pulse 2) are the same at the midpoint of rope
- (C) The wavelength of Pulse 1 becomes longer when it reaches point A
- (D) The velocity of any pulse along the rope is independent of its frequency and wavelength.
- 5. One end of a taut string of length 3m along the x-axis is fixed at x = 0. The speed of the waves in the string is 100 ms⁻¹. The other end of the string is vibrating in the y direction so that stationary waves are set up in the string. The possible waveform (s) of these stationary waves is(are) :-

[JEE(Advanced) 2014]

(A)
$$y(t) = A \sin \frac{\pi x}{6} \cos \frac{50\pi t}{3}$$

(B) $y(t) = A \sin \frac{\pi x}{3} \cos \frac{100\pi t}{3}$
(C) $y(t) = A \sin \frac{5\pi x}{6} \cos \frac{250\pi t}{3}$
(D) $y(t) = A \sin \frac{5\pi x}{2} \cos 250\pi t$

$$\Rightarrow \frac{1}{L_0} \sqrt{\frac{3}{3\mu}} = \frac{1}{2L_0} \sqrt{\frac{3}{\mu}}$$
$$T_3 = \frac{3T_0}{16} \Rightarrow (T)$$

For string (4)

Length of string = $\frac{7L_0}{4}$

It is vibrating in 14^{th} harmonic but frequency is still f_0 .

- (A) Speed of wave is property of medium so time taken to cross the string will be equal
- (B) Speeds are same but velocity is vector, has opposite directions

(C) Wavelength
$$\lambda = \frac{v}{f} = \frac{1}{f} \sqrt{\frac{T}{\mu}}$$
 and $T_O > T_A$

(D) Velocity of any pulse is $v = \sqrt{\frac{T}{\mu}}$ and it is

property of medium.

5. Ans. (A, C, D) At x = 0 y = 0

Sol. x = 3 $y \neq 0$ The equation satisfying all $\frac{\omega}{k} = 100 \text{ m/s}$

three conditions is correct. Hence answer ACD

