ELASTICITY

1. A block of weight 100 N is suspended by copper and steel wires of same cross sectional area 0.5 cm^2 and, length $\sqrt{3}$ m and 1 m, respectively. Their other ends are fixed on a ceiling as shown in figure. The angles subtended by copper and steel wires with ceiling are 30° and 60°, respectively. If elongation in copper wire is $(\Delta \ell_C)$ and elongation in steel wire is $(\Delta \ell_S)$, then the ratio $\frac{\Delta \ell_C}{\Delta \ell_S}$ is _____.

[Young's modulus for copper and steel are 1×10^{11} N/m² and 2×10^{11} N/m² respectively]

[JEE(Advanced) 2019]

2. In plotting stress versus strain curves for two materials P and Q, a student by mistake puts strain on the y-axis and stress on the x-axis as shown in the figure. Then the correct statement(s) is (are) :-

[JEE(Advanced) 2015]

- (A) P has more tensile strength than Q
- (B) P is more ductile than Q
- (C) P is more brittle than Q
- (D) The Young's modulus of P is more than that of Q

	SOLUTIONS	2.	Ans. (A, B)
1.	Ans. (2.00)	Sol. Slope of this graph represents the reciprocal of Young's modulus.	
Sol.	Let T_S = tension in steel wire		since Slope of $P >$ Slope of Q
	T_C = Tension in copper wire		Hence Y of $P < Y$ of Q
	in x direction		
	$T_{\rm C}\cos 30^\circ = T_{\rm S}\cos 60^\circ$		
	$T_{\rm C} \times \frac{\sqrt{3}}{2} = T_{\rm S} \times \frac{1}{2}$		
	$\sqrt{3}T_{\rm C} = T_{\rm S}$ (i)		
	in y direction		Θ
	$T_{\rm C} \sin 30^{\circ} + T_{\rm S} \sin 60^{\circ} = 100$		\sim
	$\frac{T_{\rm C}}{2} + \frac{T_{\rm S}\sqrt{3}}{2} = 100 \qquad \dots (ii)$		
	Solving equation (i) & (ii)		\sim
	$T_{\rm C} = 50 \ \rm N$		0
	$T_{\rm S} = 50\sqrt{3} \rm N$		
	We know		
	$\Delta L = \frac{FL}{AY} = \frac{\Delta L_{C}}{\Delta L_{S}} = \frac{T_{C}L_{C}}{A_{C}Y_{C}} \times \frac{A_{S}Y_{S}}{T_{S}L_{S}}$		
	On solving above equation	$\langle \cdot \rangle$	
	$\Delta L_{\rm C}$ – 2	$\overline{//}$	~
	$\overline{\Delta L_s}^{-2}$	\frown	
	MARIA		
2			

~