BRAIN

UNITS AND MEASUREMENTS

www.smartachievers.online

MOTION IN A STRAIGHT LIN

Motion

If a body changes its position as time passes w.r.t. frame of reference, it is said to be in motion.

A system consisting a set of coordinates and with reference to which observer describes any

The observers are moving in a particular direction x at a relative velocity of v and each observer has their own set of coordinates (x, y, z) and (x', y', z').

The actual path length covered by moving particle.

The change in position vector.

Average Acceleration $\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$

Acceleration $\vec{a} = \text{Lt } \frac{\Delta \vec{v}}{d\vec{v}} = \frac{d\vec{v}}{d\vec{v}}$ $\Delta t \rightarrow 0 \ \Delta t$

Instantaneous

The rate of distance covered with time is called speed,

$$v = \frac{\text{distance}}{\text{total time}} = \frac{d}{t}$$

per unit time,

differentiating with respect to time

The rate of change of position

 $\vec{v} = \frac{\text{displacement}}{\text{time}} = \frac{\Delta \vec{x}}{\Delta t}$

Acceleration

The time rate of change of

velocity,
$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

differentiating with respect to time

Uniform Acceleration

Magnitude of velocity changes by equal amounts in equal intervals of time.

Average Speed

total distance total time

Instantaneous Speed

 $v = Lt \frac{\Delta d}{\Delta d}$

Average Velocity

Instantaneous Velocity

 $\vec{v} = \underset{\Delta t \to 0}{\text{Lt}} \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}}{dt}$

Non-uniform Acceleration Acceleration changes with time.

Constant Acceleration

For Uniformly Accelerated Motion

- v = u + at
- $s = ut + \frac{1}{2}at^2$
- $v^2 = u^2 + 2as$
- $S_n = u + \frac{a}{2}(2n-1)$

Acceleration changes with time

For Motion with Variable Acceleration

If $a = f(t) \rightarrow$ a function of time

For Motion Under Gravity

Vertically downward motion

(Free fall case) u = 0, a = g

- v = gt
- $h = 1/2 gt^2$
- $v^2 = 2gh$

Kinematic Equations

A mathematical treatment to describe the motion of a body in 1-dimension.

Vertically upward motion

v = 0, acceleration a = -g

- u = gt
- $h = ut 1/2 gt^2$
- $u = \sqrt{2gh}$

Graphical Representation of Uniformly Accelerated Motion

The velocity with which an object moves with respect to another object is called relative velocity

$$V_{AB} = (V_A - V_B)$$
 Valody V.

 $V_{AB} = \{V_A - (-V_B)\}$

 $V_{AB} = (V_A + V_B)$

MOTION IN A PLANE

Triangle Law

If two vectors are represented by two sides of a triangle in same order, the resultant will be the third side but in opposite order. $\vec{C} = \vec{A} + \vec{B}$

Resolution of Vector

Horizontal component of \overline{A} , $A_x = A \cos \theta$ Vertical component of \overline{A} , $A_{\nu} = A \sin \theta$

$$A = \sqrt{A_x^2 + A_y^2}$$
, $\tan \theta = \left(\frac{A_y}{A_x}\right)$

Kinematic Equations in 2-Dimensions

O $v_x = u_x + a_x t$ (along x-axis) O $v_y = u_y + a_y t$ (along y-axis)

• $\vec{v} = \vec{u} + \vec{a}t$

both magnitude and direction Physical quantities having

Multiplication of a vector by a scalar ϕ changes its magnitude by a factor of ϕ .

Multiplication by a Scalar Quantity

resultant. $R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$

Relative Velocity

According to vector law of addition *i.e.*, $\vec{\nu}_{actual} = \vec{\nu}_{relative} + \vec{\nu}_{reference}$ $\frac{d\bar{r}_{PS}}{dt} = \frac{d\bar{r}_{PS'}}{dt} + \frac{d\bar{r}_{S'S}}{dt}$ So, $\vec{v}_{PS} = \vec{v}_{PS'} + \vec{v}_{S'S}$ $\vec{r}_{PS} = \vec{r}_{PS'} + \vec{r}_{S'S}$

Uniform Circular Motion

KINEMATICS IN TWO

DIMENSIONS

 $0 x = x_0 + u_x t + (1/2)a_x t^2$ (along x-axis) O $y = y_0 + u_y t + (1/2)a_y t^2$ (along y-axis)

• $\vec{r} = \vec{r_0} + \vec{u_0}t + (1/2)\vec{a}t^2$

A particle moves along a circular path with a constant speed.

Angular displacement, $\theta = \frac{s}{s}$ Angular velocity, $\omega = \frac{\theta}{-}$ Also, $\omega = \frac{2\pi}{T} = 2\pi v$

Circular

Motion

Circular motion with variable speed

Resultant acceleration of the particle

 $a = \sqrt{a_t^2 + a_r^2}$

Non Uniform Circular Motion

 $a_r = \frac{v^2}{r}$, $a_t = \text{tangential acceleration}$

Linear velocity, $v = r \omega$

Centripetal acceleration, $a = \frac{v}{m} = r\omega^2$ Linear acceleration, $a = r \alpha$

Projectile Fired Horizontally

Equation of trajectory: $y = \frac{8}{2u^2} . x^2$

For two coinitial vectors represented by the two adjacent side of a parallelogram, the diagonal of

Addition of

Vectors

Parallelogram Law

Velocity after time t: $v = \sqrt{u^2 + g^2 t^2}$

$$\beta = \tan^{-1} \frac{gt}{m}$$

Time of flight: $T = \sqrt{\frac{2h}{\sigma}}$

Horizontal range: R = u

Projectile Motion

Projectile Fired at an Angle with Horizontal

Position after time t:

 $x = (u\cos\theta)t, y = (u\sin\theta)t - \frac{1}{2}gt^2$

 $y = x \tan \theta - -$ Equation of trajectory:

Maximum height: $H = \frac{u^2 \sin^2 \theta}{1 + \frac{1}{2} \sin^2 \theta}$

Time of flight: $T = \frac{2u\sin\theta}{}$

Horizontal range: $R = \frac{u^2 \sin 2\theta}{\sin 2\theta}$

PROJECTILE MOTION

CIRCULAR MOTION

CLASS XI

BRAIN MAP CLASS XI

LAWS OF

SIR ISSAC NEWTON (1643-1727)

Inertia of Direction

The property due to which a body cannot change its direction of motion by itself.

Inertia of Rest

The property of a body due to which it cannot change its state of rest by itself.

Inertia of Motion

The tendency of a body to remain in a state of uniform motion in a straight line.

Newton's 1st Law

A body continues its state of rest or motion until unless an external force is acted on it.

Non-uniform circular motion

Circular Motion

A body moving in a circular path is called circular motion.

Centripetal force
$$F_e = \frac{mv^2}{r}$$

Motion of a Car on **Banked Road**

 Maximum velocity on banked road to avoid skidding

$$v_{\text{max}} = \sqrt{\frac{rg(\mu_s + \tan \theta)}{(1 - \mu_s \tan \theta)}}$$

Optimum speed on a smooth banked road

 $N\cos\theta$

$$v_0 = \sqrt{rg} \tan \theta$$

Newton's 2nd Law

The rate of change of linear momentum of a body is directly proportional to the external force applied on the body in the direction of force.

 $Force = mass \times acceleration$ F = ma, SI unit $\equiv N$

Newton's 3rd Law

To every action there is always an equal and opposite reaction

$$\vec{F}_{AB} = -\vec{F}_{BA}$$

CIRCULAR MOTION

IN HORIZONTAL PLANE

Bending of a Cyclist on a circular turn

Angle of bending $\theta = \tan \theta$

Road surface Horizontal surface

Motion of a Car on Level Road

Maximum velocity on a curved road to avoid skidding

$$v_{\text{max}} = \sqrt{\mu_s rg}$$

Impulse

A large force acts for a very short duration of time producing a finite change in momentum.

 $J = F \times t = \Delta p$

Conservation of Linear Momentum

Total momentum of an isolated system of interacting particles is conserved if there is no external force acting on it. $P_{\text{initial}} = P_{\text{final}}$

Resistance offered to the relative motion between the surface of the two bodies in contact.

- Acceleration of a body sliding down a rough inclined plane, $a = g(\sin \theta - \mu \cos \theta)$
- Angle of friction, $\theta = \tan^{-1}(\mu_s)$.
- Angle of repose, $\alpha = \tan^{-1}(\mu_s)$.
- Numerically, $\alpha = \theta$

- (a) Static friction: acts when a body is at rest on application of a force, $f_s = F_{\text{ext}}$
- (b) Limiting friction: acts when a body is just at the verge of movement, $f_l = \mu_s N$
- (c) Kinetic friction: acts when a body is actually sliding, $f_l = \mu_s N$

Problem Solving Techniques in Mechanics

- Make free body diagram of each element showing all external forces acting on it.
- Analyse the magnitude and direction of pseudo forces if there is any.
- For equilibrium of concurrent forces use

$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots + \vec{F}_n = 0$$

$$\frac{F_1}{\sin \alpha} = \frac{F_2}{\sin \beta} = \frac{F_3}{\sin \gamma} \quad \text{(Lami's theorem)}$$
• For horse cart type system

$$a = \frac{F_x - f}{M_H + M_{\text{cart}}}$$
 F_x= horizontal component of reaction
$$f = \text{frictional force}$$

BRAIN MAP CLASS XI

NEWTON'S LAWS OF MOTION

www.smartachievers.online

WORK, ENERGY AND POWER

CLASS XI

WORK

Work is said to be done whenever a force acts on a body and the body moves through some distance.

 $W = \overrightarrow{F} \cdot \overrightarrow{S} = FS\cos\theta$ (where θ is the angle between force applied \overrightarrow{F} and displacement vector \overrightarrow{S} .)

The SI unit of work is joule (J).

Nature of Work Done

If $\theta = 0^{\circ}$, W = FS *i.e.*, work done is maximum. If $\theta = 90^{\circ}$, W = 0 *i.e.*, work done is zero.

Work Done by a Variable Force

The work done by a variable force in changing the displacement

from S_1 to S_2 is $W = \int\limits_{S_1}^{S_2} \vec{F} \cdot d\vec{S}$ = Area under the force-displacement graph

ENERGY

It is defined as the ability of a body to do work. It is measured by the amount of work that a body can do. The unit of energy used at the atomic level is electron volt (eV) and SI unit is J.

Kinetic Energy

It is the energy possessed by a body by virtue of its motion. The K.E. of a body of mass m moving with speed ν is

$$K = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

Potential Energy

It is the energy possessed by a body by virtue of its position (in a field) or configuration (shape or size). For a conservative force in one dimension, the potential energy function U(x) may be defined

$$F(x) = -\frac{dU(x)}{dx} \text{ or } \Delta U = U_f - U_i = -\int_{x_i}^{x_f} F(x) dx$$

Power

The rate of doing work is called power.

Average Power:

It is defined as the ratio of the small amount of work done W to the time taken t to perform the work.

$$P = \frac{W}{t}$$

The SI unit of power is watt (W).

Work Energy Theorem

The work done by the net force acting on a body is equal to the change in kinetic energy of the body. W = Change in kinetic energy

$$=\frac{1}{2}mv^2 - \frac{1}{2}mu^2 \Rightarrow W = \Delta K.E.$$

The work energy theorem may be regarded as the scalar form of Newton's second law of motion.

Potential Energy of a Spring

According to Hooke's law, when a spring is stretched through a distance x, the restoring force F is such that

 $F \propto x$ (where k is the spring constant or F = -kx and its unit is N m⁻¹.) The work done is stored as potential energy U of the spring

$$W = \int_{0}^{x} kx dx = \frac{1}{2}kx^{2}$$
 \Rightarrow $U = \frac{1}{2}kx^{2}$

Head-on Collision or One-Dimensional Collision

It is a collision in which the colliding bodies move along the same straight line path before and after the collision.

Velocity of approach = Velocity of separation or $u_1 - u_2 = v_2 - v_1$

Also,
$$v_1 = \frac{m_1 - m_2}{m_1 + m_2} \cdot u_1 + \frac{2m_2}{m_1 + m_2} \cdot u_2$$
 and
$$v_2 = \frac{2m_1}{m_1 + m_2} \cdot u_1 + \frac{m_2 - m_1}{m_1 + m_2} \cdot u_2$$

COLLISION

A collision between two bodies is said to occur if either they physically collide against each other or the path of the motion of one body is influenced by the other.

Types of Collision

Elastic collision: Both the momentum and kinetic energy of the system remain conserved.

Inelastic collision: Only the momentum of the system is conserved but kinetic energy is not

www.smartachievers.online

Oblique Collision

If the two bodies do not move along the same straight line path before and after the collision, the collision is said to be oblique collision.

WORK AND ENERGY

Pendulum Suspended in an Accelerating Trolley

• For a pendulum suspended from the ceiling of a trolley moving with acceleration a, the maximum deflection θ of the pendulum

 θ of the pendulum from the vertical is $\theta = 2 \tan^{-1} \left(\frac{a}{g} \right)$

Nature of Work Done

- Positive work (0° ≤ θ < 90°)
 Component of force is parallel to displacement
- Negative work (90° < θ ≤ 180°)
 Component of force is opposite to displacement
- Zero work (θ = 90°)
 Force is perpendicular to displacement

Work Depends on Frame of Reference

With change of the frame of reference (inertial), force does not change while displacement may change. So the work done by a force will vary in different frames.

Work Done by Friction

- Work done by static friction is always zero.
- Work done by kinetic friction on the system is always negative.

Work Done by a Spring Force

• Work done for a displacement from x_i to x_f

$$W_s = -\frac{1}{2}k\left(x_f^2 - x_i^2\right)$$

Work Energy Theorem for Non-inertial Frames

For a block of mass m welded with light spring (relaxed)
When the wedge fitted moves with an acceleration a, block slides through maximum distance l relative to wedge, 2m.

$$l = \frac{2m}{k} [a(\cos\theta - \mu\sin\theta) - g(\sin\theta + \mu\cos\theta)]$$

Different cases explained using work energy theorem

Work Energy Theorem

Work done by a force acting on a body is equal to the change in the kinetic energy of the body. It is valid for a system in presence of all types of forces.

 $W_{\text{total}} = \Delta K$

Work

Work done
by a force (F) is
equal to the scalar
product of the force and the
displacement (S) of the
body.

(A is the angle

ody. $(\theta \text{ is the angle})$ $W = \vec{F} \cdot \vec{S} \qquad \text{between } F \text{ and } S)$ $W = FS \cos \theta$

The energy of a body is defined as its capacity for doing work. Energy is a scalar

Energy

Unit and dimensions for both energy and work are same

Dimensions: [ML²T⁻²]

S.I. Unit: joule (J)

quantity.

Potential Energy

It is the ability of doing work by a conservative force. It arises from the configuration of the system or position of the particles in the system.

Relation between Conservative Force and Potential Energy

Negative gradient of the potential energy gives force.

$$F = -\frac{dU}{dr}$$

Work Done in Pulling the Chain

n = Fraction of chain hanged

Motion of Blocks Connected with Pulley

• Two blocks connected by a string, as shown. If they are released from rest. After they have moved a distance *l*, their common speed is

An Application of Conservation of Energy

- A block of mass m, falling from height h, on a mass less spring of stiffness k.
 - ► The maximum compression in the spring will be

- ► If block is released slowly (h=0), maximum compression, $x = \frac{2mg}{k}$
- ► Work done in bringing the block to stable equilibrium, $W_{ext} = -\frac{m^2g^2}{2k}$

BRAIN **CLASS XI**

COLLISION

Velocity after collision:

$$\begin{split} v_1 &= \left(\frac{m_1 - e m_2}{m_1 + m_2}\right) u_1 + \left(\frac{(1 + e) m_2}{m_1 + m_2}\right) u_2 \\ v_2 &= \left(\frac{(1 + e) m_1}{m_1 + m_2}\right) u_1 + \left(\frac{m_2 - e m_1}{m_1 + m_2}\right) u_2 \end{split}$$

Loss in kinetic energy:

$$(\Delta K) = \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2} \right) (1 - e^2) (u_1 - u_2)^2$$

Head-on collision

Velocities after inelastic collision:

 $\frac{v_1}{v_2} = \frac{1-e}{1+e}$

Coefficient of Restitution (e)

Velocity of separation along line of impact Velocity of approach along line of impact

Rebounding of Ball After Collision

- After first rebound
 - **Speed**: $v_1 = ev_0 = e\sqrt{2gh_0}$
 - Height: $h_1 = e^2 h_0$
- After nth rebound:
- Speed: $v_n = e^n v_0$ Height: $h_n = e^{2n} h_0$
- Total distance travelled by the ball before it stops bouncing: $H = h_0[(1+e^2)/(1-e^2)]$

Perfectly Elastic Oblique Collison

After perfectly elastic oblique collision of two bodies of equal masses, the scattering angle $(\theta + \phi)$ would be 90°.

CLASSIFICATION OF COLLISON

On the

basis of

line of

impact

HEAD-ON COLLISION

The velocities of the particles are along the same line before and after the collision.

lead on Inelastic Collision

OBLIQUE COLLISION

The velocities of the particles are along different lines before and after the collision.

INELASTIC COLLISION

If the kinetic energy after and before collision are not equal, the collision is

On the basis of kinetic energy

PERFECTLY INELASTIC COLLISION

If velocity of separation just after collision becomes zero, then the collision is perfectly

ELASTIC COLLISION

If the kinetic energy after and before collision is same, the collision is said to be perfectly elastic.

By substituting e = 1, we get $\Delta K = 0$

said to be

inelastic.

Elastic or Perfectly Elastic Head on Collison

Velocity after collision:

$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) u_1 + \frac{2m_2 u_2}{m_1 + m_2}$$

$$v_2 = \left(\frac{m_2 - m_1}{m_2 - m_1}\right) u_2 + \frac{2m_1 u_1}{m_2 + m_2}$$

inelastic.

If projectile and target are of same mass

For $m_1 = m_2 \Longrightarrow v_1 = u_1$ and $v_2 = u_1$ i.e., their velocities get interchanged.

If massive projectile collides with a light target

For $m_1 >> m_2 \Rightarrow v_1 = u_1$ and $v_2 = 2u_1 - u_2$ **Sub case:** For $u_2 = 0$, *i.e.*, target is at rest $v_1 = u_1$ and $v_2 = 2u_1$

If light projectile collides with a heavy target

For $m_1 << m_2 \Rightarrow v_1 = -u_1 + 2u_2$ and $v_2 = u_2$ **Sub case:** For $u_2 = 0$, *i.e.*, target is at rest $v_1 = -u_1$ and $v_2 = 0$, the ball rebounds with same speed.

Common normal:

Force is exerted in common normal direction only. Momentum changes in common normal direction.

Common tangent:

F = 0

Case of

Neither momentum nor velocity changes in common tangent direction.

Perfectly Inelastic Collision

When the colliding bodies are moving in the same direction:

$$v_{\text{com}} = \frac{m_1 u_1 + m_2 u_2}{m_1 + m_2}$$

Before collision

After collision

Loss in kinetic energy

$$\Delta K = \frac{1}{2} \left(\frac{1}{m_1 + m_2} \right)^{(u_1 - u_2)^2}$$
When the colliding bodies are moving

in the opposite direction:

$$\therefore v_{com} = \frac{m_1 u_1 - m_2 u_2}{m_1 + m_2}$$
Less in kinetic energy

Loss in kinetic energy

$$\Delta K = \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2} \right) (u_1 - u_2)^2$$

If $m_2 = nm_1$ and $u_2 = 0$

Special Cases

The fractional kinetic energy transferred by projectile

$$\frac{\Delta K}{K} = \frac{4n}{(1+n)^2}$$

Fractional kinetic energy retained by the projectile

$$\left(\frac{\Delta K}{K}\right)_{\text{Retained}} = 1 - \text{fractional kinetic}$$
 energy transferred

by projectile