
CHAPTER-1 NUMBER SYSTEMS

KEY POINTS

- 1, 2, 3, are natural numbers which are represented by N.
- 0, 1, 2, 3, are whole numbers which are represented by W.
- A number is a rational if
 - (a) it can be represented in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

OR

(b) its decimal expansion is terminating (e.g. $\frac{2}{5} = 0.4$)

OR

- (c) its decimal expansion is non-terminating recurring (repeating) (e.g. $0.\overline{1234} = 0.1234234...$
- A number is irrational number if
 - (a) it can not be represented in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

OR

- (b) its decimal expansion is non-terminating non-recurring (e.g. 0.1010010001.....)
- All rational and irrational numbers collectively form real numbers.
- There are infinite rational numbers between any two rational numbers.
- There is a unique real number corresponding to every point on the number line. Also, corresponding to each real number, there is a unique point on the number line.
- Rationalisation of a denominator means to change the Irrational denominator to rational form.

- To rationalise the denominator of $\frac{1}{\sqrt{a} \pm b}$, we multiply this by $\frac{\sqrt{a} \mp b}{\sqrt{a} \mp b}$, where a is a natural number and b is an integer.
- If r is rational ands is irrational then r + s, r s, $r \cdot s$ are always irrational numbers but $\frac{r}{s}$ may be rational or irrational. For $r \neq 0$, $r \cdot s$ and $\frac{r}{s}$ are always
- Law of Exponents: Let a > 0 be a real number and m and n are rational numbers,

(1)
$$a^m a^n = a^{m+n}$$

$$(2) a^m \div a^n = a^{m-n}$$

(3)
$$(a^m)^n = a^{mn}$$

(4)
$$a^m \cdot b^m = (ab)^m$$

(5)
$$a^0 = 1$$

(6)
$$a^{-m} = \frac{1}{a^m}$$

For positive real numbers a and b, the following identities hold

$$(1) \quad \sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$$

(1)
$$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$$
 (2) $\sqrt{a} \div \sqrt{b} = \sqrt{\frac{a}{b}}$

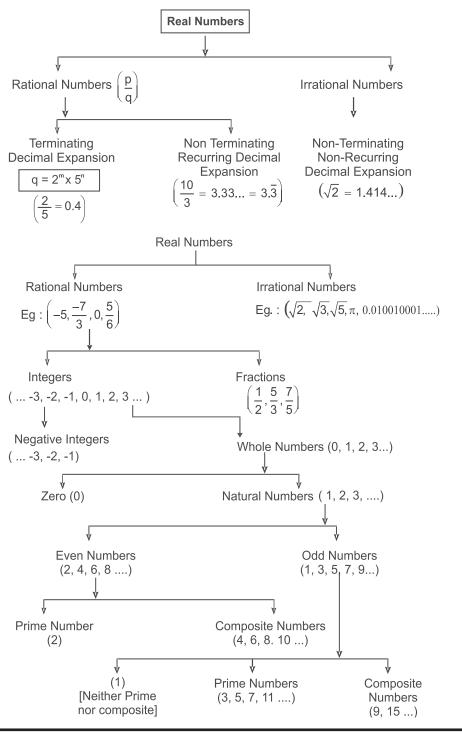
(3)
$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b$$
 (4) $(\sqrt{a} + \sqrt{b})^2 = a + 2\sqrt{ab} + b$

$$(4) \left(\sqrt{a} + \sqrt{b}\right)^2 = a + 2\sqrt{ab} + b$$

(5)
$$(a+\sqrt{b})(a-\sqrt{b})=a^2-b$$

All natural numbers, whole numbers and integers are rational

Prime Numbers: All natural numbers that have exactly two factors (i.e., 1 and itself) are called prime numbers, e.g., 2, 3, 5, 7, 11, 13, 17, 19, 23, ... etc.


Composite Numbers: Those natural numbers which have more than two factors are known as composite numbers. e.g., 4, 6, 8, 9, 10, 12, ...

1 is neither prime nor composite.

 $\sqrt[n]{a} = a^{1/n}$ where 'a' is positive real number and n is a positive integer

 $a^{\frac{m}{n}} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}$ where a is positive real number m and n are co-prime integers and n > 0

Types of Numbers

Very Short Answer Questions (1 mark)

- 1. Which of the following is a rational number?
 - (a) $1 + \sqrt{5}$

(b) $2\sqrt{3}$

(c) 0

(d) π

- 2. Which of the following is irrational?
 - (a) $\sqrt{\frac{4}{9}}$

(b) $\frac{\sqrt{12}}{\sqrt{3}}$

(c) $\sqrt{81}$

(d) $\sqrt{5}$

- 3. If $x = 2 + \sqrt{3}$ then (1/x) is equal to
 - (a) $2 + \frac{1}{\sqrt{3}}$

(b) $\frac{1}{2-\sqrt{3}}$

(c) $2 - \sqrt{3}$

(d) $\frac{1}{2} + \sqrt{3}$

4. An irrational number between $\sqrt{2}$ and $\sqrt{3}$ is

(a)
$$\frac{\sqrt{2} + \sqrt{3}}{2}$$

(b) $\frac{-\sqrt{2}+\sqrt{3}}{2}$

(c) $\sqrt{2} \times \sqrt{3}$

(d) $\sqrt{5}$

5. If $5^{2y} = 25$ then 5^{-y} is equal to

(a) $\frac{-1}{5}$

(b) $\frac{1}{50}$

(c) $\frac{1}{625}$

(d) $\frac{1}{5}$

Fill in the blanks:

6. $\sqrt{6} \times \sqrt{8} =$ _____

7. The decimal expansion of the number $\sqrt{3}$ is _____ and ____

8. _____ is a whole number but not a natural number.

9. $\sqrt[2]{(81)^{0.50}} =$ _____

10.	Between two	distinct rational	number there li	e	rational numbers

- 11. The sum and difference of rational and irrational number is always _____ numbers.
- **12.** Every rational number is a _____ number.
- 13. Find a rational number between $\frac{-2}{3}$ and $\frac{1}{4}$.
- **14.** Express $0.\overline{7}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
- 15. Find the value of $0.\overline{23} + 0.\overline{22}$ in the form $\frac{p}{q}$, where p & q are integres and $q \ne 0$.
- **16.** Find the value of x, if 5^{x-3} . $3^{2x-8} = 225$
- 17. Find the value of $[(4-5(4-5)^4]^3]$
- 18. Write first five whole numbers in $\frac{p}{q}$ form, where p and q are integers and $q \neq 0$.
- 19. Find two irrational numbers between $\sqrt{25}$ and $\sqrt{27}$.
- 20. Write two numbers whose decimal expansions are terminating.
- **21.** Find the value of $(256)^{0.16} \times (256)^{0.09}$
- 22. Evaluate $\left(\frac{3}{5}\right)^3 \times \left(\frac{5}{3}\right)^5$
- 23. What can be the maximum number of digits in the repeating block of digits in the decimal expansion of $\frac{5}{7}$.

Short Answer Type-I Questions (2 Marks)

- **24.** Represent following on number line
 - (a) $\frac{-7}{5}$

(b) $\sqrt{3}$

- **25.** Find the value of x, $\sqrt[3]{2x+3} = 5$
- **26.** Express the mixed recurring decimal $1.\overline{27}$ in the form $\frac{p}{q}$.
- 27. Simplify $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{80} + \sqrt{48} \sqrt{45} \sqrt{27}}$
- 28. Which of the following rational numbers will have a terminating decimal expansion or a non-terminating repeating (recurring) decimal expansion?
 - (a) $\frac{135}{50}$

(b) $\frac{4}{11}$

- (c) $\frac{5^2 \times 3^3}{2 \times 5^3 \times 27}$
- (b) $\frac{55}{9}$
- 29. Classify the numbers as terminating decimal or non-terminating recurring decimal or non-terminating non-recurring decimals.
 - (a) 0.1666

- (b) 0.27696
- (c) 2.142857142857......
- (d) 2.502500250002......
- (e) 4.123456789

Also classify these numbers as rational and irrational numbers.

- 30. Classify the following numbers as rational or irrational numbers.
 - (a) $\frac{7\sqrt{7}}{\sqrt{343}}$

(b) $5 + 2\sqrt{23} - (\sqrt{25} + \sqrt{92})$

(c) $\sqrt{360}$

(d) $\frac{22}{7}$

(e) π

31. Solve

(a) Add
$$\sqrt{125} + 2\sqrt{27}$$
 and $-5\sqrt{5} - \sqrt{3}$

(b) Multiply
$$\left(-3 + \sqrt{5}\right)$$
 and $\left(7 + \sqrt{3}\right)$

(c) Divide
$$2\sqrt{216} - 3\sqrt{27}$$
 by 3

Short Answer Type-II Questions (3 Marks)

32. If
$$\frac{3+2\sqrt{5}}{3-2\sqrt{5}} = p + q\sqrt{5}$$
, then find the value of 11 $(p+q)$

33. Simplify
$$\frac{(25)^{5/2} \times (81)^{1/4}}{(125)^{2/3} \times (27)^{2/3} \times 8^{4/3}}$$

34. If
$$32^{2x-5} = 4 \times 8^{x-5}$$
 then find the value of *x*.

35. Evaluate

(a)
$$\frac{2^{38} + 2^{37} + 2^{36}}{2^{39} + 2^{38} + 2^{37}}$$
 (b) $(9 + \sqrt{2} - \sqrt{3})^2$

(b)
$$(9+\sqrt{2}-\sqrt{3})^2$$

(c)
$$\left[5\left(8^{1/3} + 27^{1/3}\right)^7\right]^{1/4}$$
 (d) $\left(6 - \sqrt{2}\right)\left(2 + \sqrt{3}\right)$

(d)
$$(6-\sqrt{2})(2+\sqrt{3})$$

36. If $5^{2x-1} - (25)^{x-1} = 2500$ then find the value of x?

37. If
$$x = 3 - 2\sqrt{2}$$
, show that $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) = \pm 2$

38. If xyz = 1 then simplify

$$(1+x+y^{-1})^{-1} + (1+y+z^{-1})^{-1} + (1+z+x^{-1})^{-1}$$

39. Find the value of x if

(a)
$$25^{2x-3} = 5^{2x+3}$$

(b)
$$(4)^{2x-1} - (16)^{x-1} = 384$$

40. Solve

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \frac{1}{\sqrt{6}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{8}} + \frac{1}{\sqrt{8}+\sqrt{9}}$$

41. Express $0.6 + 0.\overline{7} + 0.4\overline{7}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

Long Answer type Questions (5 marks)

42. Evaluate
$$\frac{64^{\frac{a}{6}}}{4^a} \times \frac{2^{2a+1}}{2^{a-1}}$$

43. Simplify
$$\frac{1}{1+x^{b-a}+x^{c-a}} + \frac{1}{1+x^{a-b}+x^{c-b}} + \frac{1}{1+x^{a-c}+x^{b-c}}$$

44. Simplify
$$\left(\frac{x^a}{x^{-b}}\right)^{a-b} \times \left(\frac{x^b}{x^{-c}}\right)^{b-c} \times \left(\frac{x^c}{x^{-a}}\right)^{c-a}$$

45. Show that
$$\frac{7\sqrt{3}}{(\sqrt{10} + \sqrt{3})} - \frac{2\sqrt{5}}{(\sqrt{6} + \sqrt{5})} - \frac{3\sqrt{2}}{(\sqrt{15} + 3\sqrt{2})} = 1$$

46. Show that
$$a = \frac{\sqrt{7} - \sqrt{6}}{\sqrt{7} + \sqrt{6}}$$
 and $b = \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} - \sqrt{6}}$, then find the value of $a^2 + b^2 + ab$

47. If
$$x = 9 - 4\sqrt{5}$$
 then find

(a)
$$x + \frac{1}{x}$$

(b)
$$x - \frac{1}{x}$$

(c)
$$x^2 + \frac{1}{x^2}$$

(d)
$$x^2 - \frac{1}{x^2}$$

(e)
$$x^3 + \frac{1}{x^3}$$

(f)
$$x^3 - \frac{1}{x^3}$$

(g)
$$\sqrt{x} + \frac{1}{\sqrt{x}}$$

(h)
$$\sqrt{x} - \frac{1}{\sqrt{x}}$$

(i)
$$x + \frac{14}{x}$$

48. If $P = 5 - 2\sqrt{6}$ find

(a)
$$P^2 + \frac{1}{P^2}$$

(b)
$$P^2 - \frac{1}{P^2}$$

(c)
$$P^4 + \frac{1}{P^4}$$

49. Find the value of
$$\frac{4}{(216)^{-2/3}} + \frac{1}{(256)^{-3/4}} + \frac{2}{(243)^{-1/5}}$$

50. If
$$\frac{9^n \times 3^2 \times (3^{-n/2})^{-2} - (27)^n}{3^{3m} \times 2^3} = \frac{1}{729}$$
 then prove that $m - n = 2$

51. If
$$x = 2^y$$
 and $\frac{9 \times 3^{2x} - 3^x \times 3^{x-2}}{2} = 360$. Find the value of y.

52. If a = 2, b = 3 then find the values of the following

(a)
$$(a^{b} + b^{a})^{-1}$$

(b)
$$(a^a + b^b)^{-1}$$

53. If
$$ab + bc + ca = 0$$
, find the value of $\frac{1}{a^2 - bc} + \frac{1}{b^2 - ca} + \frac{1}{c^2 - ab}$

10

CHAPTER-1

NUMBER SYSTEM

ANSWERS

- **1.** (c) 0
- 2. (d) $\sqrt{5}$
- 3. (c) $2-\sqrt{3}$
- 4. (a) $\frac{\sqrt{2} + \sqrt{3}}{2}$
- 5. (d) $\frac{1}{5}$
- 6. $4\sqrt{3}$
- 7. Non-terminating and non-repeating
- 8. (
- **9.** 3
- 10. Infinite
- 11. Irrational
- **12.** Real
- 13. Hint: $\frac{a+b}{2}$ or make denominators equal $\frac{1}{12}$: (other answers are also possible)
- 14. $\frac{7}{9}$
- 15. $\frac{5}{11}$
- **16.** Hint: Compare powers

$$x = 5$$

17. −1

18.
$$\frac{0}{1}, \frac{1}{1}, \frac{2}{1}, \frac{3}{1}, \frac{4}{1}$$

19.
$$\sqrt{25} = 5$$

$$\sqrt{27} = 3\sqrt{3} = 3 \times 1.732 = 5.196$$

Two irrational No. 5.012301234012345.......

5.1378424134876......

(other answers are also possible)

- 20. $\frac{17}{5}$, $\frac{43}{10}$ (other answers are also possible)
- **21.** 4
- **22.** $\left(\frac{5}{3}\right)^2$
- **23.** 6
- **25.** Hint: cubing on both sides

$$(\sqrt[3]{2x+3})^3 = 5^3$$

$$2 = 125$$

$$x = 61$$

- 26. $\frac{14}{11}$
- **27.** 1
- **28.** (a) Terminating decimal
 - (b) Non-terminating but recurring decimal
 - (c) Hint: simplify it first
 Terminating decimal
 - (d) Non-terminating but recurring decimal

- 29. (a) Terminating decimal/Rational number
 - (b) Terminating decimal/Rational number
 - (c) Non-terminating but repeating/Rational number
 - (d) Non-terminating non-Repeating/Irrational number
 - (e) Non-terminating but Repeating/Rational number.
- **30.** (a) Rational
 - (b) Rational
 - (c) Irrational
 - (d) Rational
 - (e) Irrational
- **31.** (a) $5\sqrt{3}$

(b)
$$-21-3\sqrt{3}+7\sqrt{5}+\sqrt{15}$$

(c)
$$4-3\sqrt{3}$$

32. Hint: Rationalise the denominator

$$p = \frac{-29}{11},$$

$$q = \frac{-12}{11}$$

33. Hint:
$$\frac{\left(5^2\right)^{5/2} \times \left(3^4\right)^{1/4}}{5^2 \times 3^2 \times 2^4} = \frac{5^3}{3 \times 2^4} = \frac{125}{48}$$

34. Hint:

$$2^{5(2x-5)} = 2^2 \times 2^{3(x-5)}$$

$$2^{10x-25} = 2^{3x-15+2}$$

$$x-25 10 = 3x-13$$
$$x = \frac{12}{7}$$

35. (a) Hint:
$$\frac{2^{36} \left(2^2 + 2^1 + 1\right)}{2^{37} \left(2^2 + 2^1 + 1\right)} = \frac{1}{2}$$

(b) Hint:
$$(9)^2 + (\sqrt{2} - \sqrt{3})^2 + 2 \times 9(\sqrt{2} - \sqrt{3}) = 2(43 - \sqrt{6} + 9\sqrt{2} - 9\sqrt{3})$$

(c) 25

(d)
$$12 + 6\sqrt{3} - 2\sqrt{2} - \sqrt{6}$$

36. Hint:

$$5^{2x-1} - 5^{2(x-1)} = 5^4 \times 2^2$$

$$5^{2x-1} \frac{-5^{2x-1}}{5} = 5^4 \times 2^2$$
$$x = 3$$

37. Hint:

$$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 = x + \frac{1}{x} - 2 = 4$$

$$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) = \pm 2$$

38. Hint: replace

$$y = \frac{1}{xz}$$

$$= (1 + x + xz)^{-1} + \left(1 + \frac{1}{xz} + \frac{1}{z}\right)^{-1} + \left(1 + z + \frac{1}{x}\right)^{-1}$$

$$= \frac{1}{1 + x + xz} + \left(\frac{xz + 1 + x}{x^2}\right)^{-1} + \left(\frac{x + xz + 1}{x}\right)^{-1}$$

$$= \frac{1}{1 + x + xz} + \frac{xz}{1 + x + xz} + \frac{x}{1 + x + xz}$$

$$= \frac{1 + zx + x}{1 + x + xz} = 1$$

39. (a) Hint:

$$5^{2(2x-3)} = 5^{2x+3}$$
$$x = \frac{9}{2}$$

(b) Hint:

$$2^{2(2x-1)} - 2^{4(x-1)} = 2^7 \times 3$$
$$2^{4x-2} - 2^{4x-4} = 2^7 \times 3$$
$$2^{4x-2} (1 - 2^{-2}) = 2^7 \times 3$$
$$x = \frac{11}{4}$$

40. Hint:

$$\frac{1}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}} = \frac{1-\sqrt{2}}{1-2} = -(1-\sqrt{2})$$

$$= \sqrt{2} - 1 + \sqrt{3} - \sqrt{2} + \sqrt{4} - \sqrt{3} + \sqrt{5} - \sqrt{4} + \sqrt{6} - \sqrt{5}$$

$$+ \sqrt{7} - \sqrt{6} + \sqrt{8} - \sqrt{7} + \sqrt{9} - \sqrt{8}$$

$$= \sqrt{9} - 1 = 3 - 1 = 2$$

41.
$$\frac{167}{90}$$

$$a = 13 - 2\sqrt{42}$$

$$b = 13 + 2\sqrt{42}$$

$$(a+b)^2 - ab = a^2 + b^2 + ab$$

$$a^2 + b^2 + ab = \left(13 - 2\sqrt{42} + 13 + 2\sqrt{42}\right)^2 - \left(13 - 2\sqrt{42}\right)\left(13 + 2\sqrt{42}\right)$$

$$a^2 + b^2 + ab = (26)^2 - (169 - 168)$$

$$= 676 - 1 = 675$$

(b)
$$-8\sqrt{5}$$

(d)
$$-144\sqrt{5}$$

$$x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right)^{3} - 3\left(x + \frac{1}{x}\right)$$
$$= 18^{3} - 3 \times 18 = 5778$$

$$x^{3} - \frac{1}{x^{3}} = \left(x - \frac{1}{x}\right)^{3} + 3\left(x - \frac{1}{x}\right)$$
$$= (-8\sqrt{5})^{3} + 3 \times - 8\sqrt{5}$$
$$= -2584\sqrt{5}$$

(g)
$$2\sqrt{5}$$

(i)
$$135 + 52\sqrt{5}$$

(b) Hint:
$$P^2 - \frac{1}{P^2} = \left(P + \frac{1}{P}\right)\left(P - \frac{1}{P}\right) = -40\sqrt{6}$$

(c) Hint:
$$P^4 + \frac{1}{P^4} = \left(P^2 + \frac{1}{P^2}\right)^2 - 2 = 9602$$

$$\frac{3^{2n} \times 3^2 \times 3^{\frac{-n}{2} \times -2} - 3^{3n}}{3^{3m} \times 2^3} = \frac{1}{729}$$

$$\frac{3^{2n+2+n}-3^{3n}}{3^{3m}\times 2^3} = \frac{1}{729}$$

$$3^{3n-3m} = 3^{-6}$$

$$n-m = -2$$
∴ $m-n = 2$

51. Hint:

$$\frac{3^2 \times 3^{2x} - 3^x \times 3^{x-2}}{2} = 360$$

$$\frac{3^{2x} \left(3^2 - 3^{-2}\right)}{2} = 360$$
$$3^{2x} = 81$$

$$3^{2x} = 81$$

$$x = 2$$

$$y = 1$$

52. (a)
$$\frac{1}{17}$$

(b)
$$\frac{1}{31}$$

53. Hint:
$$ab = -(bc + ca)$$
; $bc = -(ca + ab)$; $ca = -(ab + bc)$

$$= \frac{1}{a^2 + ac + ab} + \frac{1}{b^2 + ab + bc} + \frac{1}{c^2 + bc + ca}$$

$$= \frac{1}{a(a+b+c)} + \frac{1}{b(a+b+c)} + \frac{1}{c(a+b+c)}$$

$$= 0$$

CHAPTER-1

NUMBER SYSTEM

PRACTICE TEST

M.M: 20

1. Write one rational number and one irrational number. (1) 2. If $p = 5 - 2\sqrt{6}$ then find the value of $\frac{1}{p}$. (1) 3. Simplify $4\sqrt{3} + 3\sqrt{48} - \frac{5}{2}\sqrt{12}$ (2) **4.** If $(5)^{2x-1} - (25)^{x-1} = 2500$ then find the value of x. (2) 5. Find the value of x and y $\frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} + \sqrt{7}} = x - y\sqrt{77}$ (3) **6.** Represent $(2 + \sqrt{3})$ on number line (3) **7.** Simplify: $\frac{16 \times 2^{a+1} - 4 \times 2^a}{16 \times 2^{a+2} - 2 \times 2^{a+2}}$ (3)

8. Express the following in the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$ $0.\overline{4} + 0.1\overline{8} + 0.\overline{2}$ (5)

Time: 1 hr