CHAPTER 10

VECTORS

Vectors are probably the most important tool to learn in all of physics and engineering. Vectors are using in daily life following are few of the example.

- Navigating by air and by boat is generally done using vectors.
- Planes are given a vector to travel, and they use their speed to determine how far they need to go before turning or landing. Flight plans are made using a series of vectors.
- Sports instructions are based on using vectors.

VECTORS

Topics to be covered as per C.B.S.E. revised syllabus (2024-25)

- Vectors and scalars
- · Magnitude and direction of a vector
- Direction consines and direction ratios of a vector.
- Types of vectors (equal, unit, zero, parallel and collinear vectors)
- Position vector of a point
- Negative of a vector
- Components of a vector
- Addition of vectors
- Multiplication of a vector by a scalar
- Position vector of a point dividing a line segment in a given ratio
- Definition, Geometrical interpretation, properties and application of scalar (dot) product of vectors
- Vector (cross) product of vectors.

[Class XII : Maths] 179

POINTS TO REMEMBER

- A quantity that has magnitude as well as direction is called a vector. It
 is denoted by a directed line segment.
- Two or more vectors which are parallel to same line are called collinear vectors.
- Position vector of a point P(a, b, c) w.r.t. origin (0, 0, 0) is denoted by \overrightarrow{OP} where $\overrightarrow{OP} = a\hat{i} + b\hat{j} + c\hat{k}$ and $|\overrightarrow{OP}| = \sqrt{a^2 + b^2 + c^2}$.
- If $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ be any two points in space, then

$$\overrightarrow{AB} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$
 and

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

- Any vector \vec{a} is called unit vector if $|\vec{a}| = 1$ It is denoted by \hat{a}
- If two vectors \vec{a} and \vec{b} are represented in magnitude and direction by the two sides of a triangle in order, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by third side of a triangle taken in opposite order. This is called triangle law of addition of vectors.
- If \vec{a} is any vector and λ is a scalar, then λ \vec{a} is vector collinear with \vec{a} and $|\lambda \vec{a}| = |\lambda||\vec{a}|$.
- If \vec{a} and \vec{b} are two collinear vectors, then $\vec{a} = \lambda \vec{b}$ where λ is some non-zero scalar.

- Any vector \vec{a} can be written as $\vec{a} = |\vec{a}|\hat{a}$ where \hat{a} is a unit vector in the direction of \vec{a} .
- If \vec{a} and \vec{b} be the position vectors of points A and B, and C is any point which divides \overrightarrow{AB} in ratio m:n internally then position vector \vec{c} of point C is given as $\vec{c} = \frac{m\vec{b} + n\vec{a}}{m+n}$. If C divides \overrightarrow{AB} in ratio m:n externally, then $\vec{c} = \frac{m\vec{b} n\vec{a}}{m-n}$. If C is mid point then $\vec{c} = \frac{\vec{a} + \vec{b}}{2}$
- The angles α , β and γ made by $\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$ with positive direction of x, y and z-axis are called direction angles and cosines of these angles are called direction cosines of \vec{r} usually denoted as $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$

Also
$$I = \frac{a}{|\vec{r}|}$$
, $m = \frac{b}{|\vec{r}|}$, $n = \frac{c}{|\vec{r}|}$ and $f' + m^2 + n^2 = 1$

or
$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

- The numbers a, b, c proportional to I, m, n are called direction ratios.
- Scalar product or dot product of two vectors \vec{a} and \vec{b} is denoted as $\vec{a} \cdot \vec{b}$ and is defined as $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, θ is the angle between \vec{a} and $\vec{b} \cdot (0 \le \theta \le \pi)$.
- Dot product of two vectors is commutative i.e. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

•
$$\vec{a} \cdot \vec{b} = 0 \iff \vec{a} = \vec{o} \text{ or } \vec{b} = \vec{o} \text{ or } \vec{a} \perp \vec{b}.$$

•
$$\vec{a} \cdot \vec{a} = |\vec{a}|^2$$
, so $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$

• If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then

$$\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3.$$

- Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ Projection vector of \vec{a} along $\vec{b} = \left(\frac{(\vec{a} \cdot \vec{b})}{|\vec{b}|}\right)\hat{b}$.
- Cross product or vector product of two vectors \vec{a} and \vec{b} is denoted as $\vec{a} \times \vec{b}$ and is defined as $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \, \hat{n}$, where θ is the angle between \vec{a} and \vec{b} . (0 $\leq \theta \leq \pi$). And \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} such that \vec{a} . \vec{b} and \hat{n} form a right handed system.
- Cross product of two vectors is not commutative i.e., $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$, but $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$.
- $\vec{a} \times \vec{b} = \vec{0} \iff \vec{a} = \vec{0}, \vec{b} = \vec{0} \text{ or } \vec{a} \parallel \vec{b}.$
- $\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = \vec{\mathbf{0}}.$
- $\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}, \hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}, \hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \text{ and } \hat{\mathbf{j}} \times \hat{\mathbf{i}} = -\hat{\mathbf{k}}, \hat{\mathbf{k}} \times \hat{\mathbf{j}} = -\hat{\mathbf{i}}, \hat{\mathbf{i}} \times \hat{\mathbf{k}} = -\hat{\mathbf{j}}$
- If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

- Unit vector perpendicular to both \vec{a} and $\vec{b} = \pm \left(\frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|} \right)$.
- $\bullet \qquad \left| \vec{a} \times \vec{b} \right|$ is the area of parallelogram whose adjacent sides are \vec{a} and \vec{b}
- $\frac{1}{2} |\vec{a} \times \vec{b}|$ is the area of parallelogram where diagonals are \vec{a} and \vec{b} .
- If \vec{a} , \vec{b} and \vec{c} form a triangle, then area of the triangle
- $= \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{1}{2} |\vec{b} \times \vec{c}| = \frac{1}{2} |\vec{c} \times \vec{a}|.$

Illustration:

Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$ Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 27$

Solution:

 \vec{d} is perpendicular to \vec{a} and \vec{b} both

Let
$$\vec{d} = \lambda (\vec{a} \times \vec{b}) = \lambda \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 4 & 2 \\ 3 & -2 & 7 \end{vmatrix}$$

$$\vec{d} = \lambda (32\hat{i} - \hat{j} - 14\hat{k})$$

But
$$\vec{c} \cdot \vec{d} = 27$$

 $\therefore (2\hat{i} - \hat{j} + 4\hat{k}) \cdot \lambda (32\hat{i} - \hat{j} - 14\hat{k}) = 27$
 $\Rightarrow \lambda (64 + 1 - 56) = 27$
 $\Rightarrow \lambda = 3$
and $\vec{d} = 3(32\hat{i} - \hat{j} - 14\hat{k}) = 96\hat{i} - 3\hat{j} + 42\hat{k}$

Illustration:

Vectors \vec{a} , \vec{b} and \vec{b} are such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 5$, $|\vec{b}| = 7$ and $|\vec{c}| = 3$. Find the angle between \vec{a} and \vec{c}

Solution:

Given
$$\vec{a} + \vec{b} + \vec{c} = \vec{0}$$

 $\vec{a} + \vec{c} = -\vec{b}$
 $(\vec{a} + \vec{c}) \cdot (\vec{a} + \vec{c}) = (-\vec{b}) \cdot - (\vec{b})$
 $\Rightarrow (\vec{a})^2 + \vec{a} \cdot \vec{c} + \vec{c} \cdot \vec{a} + (\vec{c})^2 = |\vec{b}|^2$ $(\because \vec{a} \cdot \vec{a} = |\vec{a}|^2)$
 $\Rightarrow \qquad \qquad 2\vec{a} \cdot \vec{c} = |\vec{b}|^2 - |\vec{a}|^2 - |\vec{c}|^2$
 $\Rightarrow \qquad \qquad 2|\vec{a}||\vec{c}|\cos\theta = |\vec{b}|^2 - |\vec{a}|^2 - |\vec{c}|^2$
Where ' θ ' be the angle between \vec{a} and \vec{c}

$$\Rightarrow 2 \times 5 \times 3 \cos \theta = 49 - 25 - 9$$

$$\Rightarrow \cos \theta = \frac{15}{30}$$

$$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$$

Illustration:

Let \vec{a} and \vec{b} are two unit vectors and '0' is the angle between them, then find '0' if $\vec{a} + \vec{b}$ is unit vector.

Solution:

Here
$$|\vec{a}| = |\vec{b}| = 1$$
 and $|\vec{a} + \vec{b}| = 1$

$$|\vec{a}| + \vec{b}|^2 = 1$$

$$|\vec{a} + \vec{b}| \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b})^2 = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b})^2 = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b})^2 = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b})^2 = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b})^2 = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} + \vec{b}) = 1$$

$$|\vec{a} \cdot \vec{a}| + \vec{b} \cdot (\vec{a} +$$

ONE MARK QUESTIONS

MULTIPLE CHOICE QUESTIONS (1 Mark Each)

Select the correct option out of the four given options:

1. If $\overrightarrow{AB} = 3\hat{i} + 2\hat{j} - \hat{k}$ and the coordinate of A are (4, 1, 1), then the coordinate of B are.

(a)
$$(1, -1, 2)$$

(b)
$$(-7, -3, 0)$$

(d)
$$(-1, 1, -2)$$

2. Let $\vec{a} = -2\hat{i} + \hat{j}$, $\vec{b} = \hat{i} + 2\hat{j}$ and $\vec{c} = 4\hat{i} + 3\hat{j}$, then the values of x and y such that $\vec{c} = x\vec{a} + y\vec{b}$, are:

(a)
$$x = 1, y = 2$$

(b)
$$x = -1$$
, $y = 2$

(c)
$$x = -1$$
, $y = -2$

(d)
$$x = 1$$
, $y = -1$

3. A unit vector in the direction of the resultant of the vector $\hat{i} - \hat{j} + 3\hat{k}$, $2\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} + 2\hat{i} - 2\hat{k}$ is

(a)
$$\frac{1}{\sqrt{21}}(4\hat{i}-2\hat{j}-\hat{k})$$

(b)
$$\frac{1}{\sqrt{21}}(4\hat{i}-2\hat{j}+\hat{k})$$

(c)
$$4\hat{i} - 2\hat{j} - \hat{k}$$

(d)
$$\frac{1(4\hat{i}+2\hat{j}-\hat{k})}{\sqrt{21}}$$

4. If $2\hat{i} + 3\hat{j} + \hat{k}$ and $\hat{i} - 2\hat{j} - \hat{k}$ are two vectors, then a vector of magnitude 5 units parallel to the sum of given vectors

(a)
$$\sqrt{\frac{5}{2}}(3\hat{i} + \hat{j})$$

(b)
$$\frac{1}{\sqrt{30}}(\hat{i}+5\hat{j}+2\hat{k})$$

(c)
$$\frac{1}{\sqrt{10}}(3\hat{I}+\hat{J})$$

(d)
$$5(3\hat{i} + \hat{j})$$

5. If $\vec{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 5\hat{i} - 9\hat{j} + 2\hat{k}$ are perpendicular, then the value of ' λ ' is:

(a)
$$\lambda = \frac{16}{5}$$

(b)
$$\lambda = -\frac{16}{5}$$

(c)
$$\lambda = 4$$

(d)
$$\lambda = \frac{10}{9}$$

6. The value of p for which $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} + p\hat{j} + 3\hat{k}$ are parallel vector is

(a)
$$p = -\frac{30}{2}$$

(c)
$$p = \frac{2}{3}$$

(d)
$$p = \frac{3}{2}$$

7. If $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + 3\hat{j} + p\hat{k}) = \vec{0}$, then the value of 'p' is

(a)
$$p = -\frac{20}{27}$$

(b)
$$p = \frac{27}{2}$$

(c)
$$p = 0$$

(d)
$$p = -\frac{27}{2}$$

- 8. Value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + (\hat{i} \times \hat{k}) \cdot \hat{j}$ is
 - (a) 2

(b) 1

(c) 0

- (d) -2
- 9. If $\bar{a} = 5\hat{i} 4\hat{j} + \hat{k}$, $\bar{b} = -4\hat{i} + 3\hat{j} 2\hat{k}$ and $\bar{c} = \hat{i} 2\hat{j} 2\hat{k}$ than the value of $\bar{c}.(\bar{a} \times \bar{b})$ is
 - (a) -5

(b)

(c) 35

(d) 30

186		[Class XII : Maths]	
	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$	
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{6}$	
18.	If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $ \vec{a} = 3$, $ \vec{b} = 4$ and $ \vec{c} = \sqrt{37}$, then the angle between \vec{a} and \vec{b} is		
	(c) 88	(d) None of these	
	(a) 22	(b) 44	
17.	17. If $ \vec{a} = 4$, $ \vec{b} = 3$ and $ \vec{a} \times \vec{b} = 10$, than the value of $ \vec{a} \cdot \vec{b} ^2$ is		
	(a) [0, 12] (c) [0, 8]	(b) [8, 12] (d) [–12, 8]	
16.	If $ \vec{a} = 4$ and $-3 \le k \le 2$, than the range of $ \vec{ka} $ is		
	(c) 120°	(d) 45°	
	(a) 30°	(b) 60°	
15.	If $\vec{a} \cdot \vec{b} = 3$ and $ \vec{a} \times \vec{b} = 3\sqrt{3}$, then the	angle between $ ec{a} $ and $ ec{b} $ is	
	(a) $\lambda = 5$ (c) $\lambda = -9$	(b) $\lambda = -5$ (d) $\lambda = 9$	
14.		$+6\hat{j}+3\hat{k}$ is 4 units, then the value of λ is	
4.4	(c) $5\sqrt{3}$ sq. units		
	(a) 8 sq. units	(b) $\sqrt{91}$ sq. units (d) $10\sqrt{3}$ sq. units	
	the parallelogram is		
13.	(c) 60° If $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$ are the di	agonals of a parallelagram, then the area of	
	(a) 30°	(b) 45° (d) 90°	
12.	If \vec{a} and \vec{b} are two vectors such that $ \vec{a} \times \vec{b} = \vec{a}.\vec{b}$, then the angle between \vec{a} and \vec{b} is		
	(c) $\frac{1}{3}(\hat{i}+2\hat{j}+2\hat{k})$	(d) $\frac{1}{3}(\hat{i}+2\hat{j}-3\hat{k})$	
	(a) $\frac{1}{3}(-\hat{i}+2\hat{j}+2\hat{k})$	(b) $\frac{1}{3}(\hat{i}-2\hat{j}+2\hat{k})$	
11.	A unit vector perpendicular to $2\hat{i} - \hat{j} + 2\hat{k}$ and $4\hat{i} - \hat{j} + 3\hat{k}$ is		
	(c) $\lambda = 3$	(d) $\lambda = \pm 2\sqrt{3}$	
10.	(a) $\lambda = 0$	(b) $\lambda = 4$	
10.	If vector $\lambda \hat{i} + 3\hat{j}$ and $4\hat{i} + \lambda \hat{j}$ are collinear, then the value of ' λ ' is		

- 19. If $(\vec{a} + \vec{b}) \perp \vec{b}$ and $(\vec{a} + 2\vec{b}) \perp \vec{a}$, then
 - (a) $(\vec{a}) = 2 |\vec{b}|$

(b) $2|\vec{a}| = \vec{b}$

(c) $(\vec{a}) = (\vec{b})$

- (d) $|\vec{a}| = \sqrt{2} |\vec{b}|$
- 20. If $|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$, then the value of $|\vec{a} \vec{b}|$ is
 - (a) 0

(b) 1

(c) √3

(d) 2

Assertion-Reason Based Questions

In the following questions a statement of Assertion (A) is followed by a statement of Reason (R) Choose the correct answer out of the following couces:

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (b) Both (A) and (R) are true, but (R) is not the correct explanation of (A)
- (c) (A) is true and (R) is false
- (d) (A) is false, but (R) is true
- 21. Assertion (A): If $|\vec{a}| = 3$, $|\vec{b}| = 5$ and \vec{a} , $\vec{b} = 10$.

$$|\vec{a} \times \vec{b}|^2 = 125$$

Reason (R): $|\vec{a} \times \vec{b}|^2 - (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$

22. Assertion (A) : If \vec{a} and \vec{b} are unit vector such that $|\vec{a} + \vec{b}| = \sqrt{3}$, then the angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$

Reason (R): Angle between vectors \vec{a} and \vec{b} is given by $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$

23. Assertion (A) : If $|\vec{a}| = 4$, $|\vec{b}| = 5$ and $|\vec{a} \times \vec{b}| = 20$, then $\vec{a} \perp \vec{b}$

Reason (R): Two non zero vector \vec{a} and \vec{b} are perpandicular if $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}|$

24. Assertion (A): If $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 12$ and $\vec{a} = 2 | \vec{b} |$, then $| \vec{a} | = 4$ and $| \vec{b} | = 2$

Reason (R): If \vec{a} and \vec{b} are two vectors, then $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 - |\vec{b}|^2$

25. Assertion (A): If $|2\vec{a} + \vec{b}| = |2\vec{a} - \vec{b}|$, than \vec{a} parellel to \vec{b}

Reason (B): Two non zero vector \vec{a} and \vec{b} are perpendicular if $\vec{a} \cdot \vec{b} = 0$.

TWO MARK QUESTIONS

- 1. A vector \vec{r} is inclined to x axis at 45° and y-axis at 60° if $|\vec{r}|$ = 8 units. find \vec{r} .
- 2. if $|\vec{a} + \vec{b}| = 60$, $|\vec{a} \vec{b}| = 40$ and $|\vec{b}| = 46$ find $|\vec{a}|$
- 3. Write the projection of $\vec{b} + \vec{c}$ on \vec{a} where

$$\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$$
 and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$

- 4. If the points (-1, -1, 2), (2, m, 5) and (3, 11, 6) are collinear, find the value of m.
- 5. For any three vectors \vec{a}, \vec{b} and \vec{c} write value of the following. $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b})$
- 6. If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 144$ and $|\vec{a}| = 4$. Find the value of $|\vec{b}|$.
- 7. If for any two vectors \vec{a} and \vec{b} , $(\vec{a}+\vec{b})^2+(\vec{a}-\vec{b})^2=\lambda \left[(\vec{a})^2+(\vec{b})^2\right] \text{ then write the value of } \lambda \ .$
- 8. if \vec{a}, \vec{b} are two vectors such that $|(\vec{a} + \vec{b})| = |\vec{a}|$ then prove that $|(\vec{a} + \vec{b})| = |\vec{a}|$ is perpendicular to \vec{b} .
- 9. Show that vectors $\vec{a} = 3\hat{i} 2\hat{j} + \hat{k}$ $\vec{b} = \hat{i} 3\hat{j} + 5\hat{k}, \vec{c} = 2\hat{i} + \hat{j} 4\hat{k} \text{ form a right angle triangle.}$
- 10. If \vec{a} , \vec{b} , \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 5$, $|\vec{b}| = 12$, $|\vec{c}| = 13$, then find $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$
- 11. The two vectors $\hat{i} + \hat{j}$ and $3\hat{i} \hat{j} + 4\hat{k}$ represents the two sides AB and AC respectively of Δ ABC, find the length of median through A.

- 12. If position vectors of the points A, B and C are \overrightarrow{a} , \overrightarrow{b} and $4\overrightarrow{a} 3\overrightarrow{b}$ respectively, then find vectors \overrightarrow{AC} and \overrightarrow{BC} .
- 13. If position vectors of three points A, B and C are $-2\vec{a} + 3\vec{b} + 5\vec{c}$, $\vec{a} + 2\vec{b} + 3\vec{c}$ and $7\vec{a} \vec{c}$ respectively. Then prove that A, B and C are collinear.
- 14. If the vector $\hat{\mathbf{i}} + p\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ is rotated through an angle θ and is doubled in magnitude, then it becomes $4\hat{\mathbf{i}} + (4p-2)\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$. Find the value of p.
- 15. If $\overrightarrow{AB} = 5\hat{i} 2\hat{j} + 4\hat{k}$ and $\overrightarrow{AC} = 3\hat{i} + 4\hat{k}$ are sides of the triangle *ABC*. Find the length of median through *A*.
- 16. Find scalar projection of the vector $7\hat{i} + \hat{j} + 4\hat{k}$ on the vector $2\hat{i} + 6\hat{j} + 3\hat{k}$. Also find vector porojection
- 17. Let $\vec{a} = 3\hat{i} + x\hat{j} \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + y\hat{k}$ are mutually perpendicular and $|\vec{a}| = |\vec{b}|$. Find x and y.
- 18. If \vec{a} and \vec{b} are unit vectors, find the angle between \vec{a} and \vec{b} so that $\vec{a} \sqrt{2} \ b$ is a unit vector.
- 19. If $\vec{a} = 2\hat{i} 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} 5\hat{k}$. Find the angle between \vec{a} and $\vec{a} \times \vec{b}$.
- 20. Using vectors, prove that angle in a semi circle is 90°.

THREE MARKS QUESTIONS

- 1. The points A,B and C with position vectors $3\hat{\imath} y\hat{\jmath} + 2\hat{k}$, $5\hat{\imath} \hat{\jmath} + \hat{k}$ and $3x\hat{\imath} + 3\hat{\jmath} \hat{k}$ are collinear. Find the values of x and y and also the ratio in which the point B divides AC.
- 2. If sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$.
- 3. Let $\vec{a}=4\hat{\imath}+5\hat{\jmath}-\hat{k}$, $\vec{b}=\hat{\imath}-4\hat{\jmath}+5\hat{k}$ and $\vec{c}=3\hat{\imath}+\hat{\jmath}-\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and satisfying $\vec{d}\cdot\vec{c}=21$
- 4. If \hat{a} and \hat{b} are unit vectors inclined at an angle θ then proved that
 - (i) $\cos \frac{\theta}{2} = \frac{1}{2} |\hat{a} + \hat{b}|$
 - (ii) $\sin\frac{\theta}{2} = \frac{1}{2}|\hat{a} \hat{b}|$
 - (iii) $\tan \frac{\theta}{2} = \left| \frac{\hat{a} \hat{b}}{\hat{a} \hat{b}} \right|$
- 5. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors of equal magnitude. Prove that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined with vectors \vec{a}, \vec{b} and \vec{c} . Also find angle.
- 6. For any vector \vec{a} prove that $|\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2|\vec{a}|^2$
- 7. Show that $(\vec{a} \times \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2 (\vec{a}.\vec{b})^2 = \begin{vmatrix} \vec{a}.\vec{a} & \vec{a}.\vec{b} \\ \vec{a}.\vec{b} & \vec{b}.\vec{b} \end{vmatrix}$
- 8. If \vec{a} , \vec{b} and \vec{c} are the position vectors of vertices A,B,C of a Δ ABC, show that the area of triangle ABC is $\frac{1}{2} | \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} |$. Deduce the condition for points \vec{a} , \vec{b} and \vec{c} to be collinear.

- 9. Let \vec{a} , \vec{b} and \vec{c} be unit vectors such that \vec{a} . $\vec{b} = \vec{a}$. $\vec{c} = 0$ and the angle between b and c is $\pi/6$, prove that $\vec{a} = \pm 2(\vec{b} \times \vec{c})$.
- 10. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.
- 11. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{c} = \hat{\jmath} \hat{k}$ are given vectors, then find a vector \vec{b} satisfying the equations $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} = 3$.
- 12. Find the altitude of a parallelepiped determined by the vectors $\vec{a}, \vec{b} \ and \ \vec{c}$ if the base is taken as parallelogram determined by $\vec{a} \ and \ \vec{b}$ and if $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}, \ \vec{b} = 2\hat{\imath} + 4\hat{\jmath} \hat{k}$ and $\vec{c} = \hat{\imath} + \hat{\jmath} + 3\hat{k}$.
- 13. If $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$ such that each is perpendicular to sum of the other two, find $|\vec{a} + \vec{b} + \vec{c}|$
- 14. Decompose the vector $6\hat{\imath} 3\hat{\jmath} 6\hat{k}$ in two vectors which are parallel and perpendicular to the vector $\hat{\imath} + \hat{\jmath} + \hat{k}$ respectively.
- 15. If \vec{a} , \vec{b} and \vec{c} are vectors such that \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, $\vec{a} \neq 0$, then show that $\vec{b} = \vec{c}$.
- 16. If \vec{a} , \vec{b} and \vec{c} are three non zero vectors such that $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{b} \times \vec{c} = \vec{a}$. Prove that \vec{a} , \vec{b} and \vec{c} are mutually at right angles and $|\vec{b}| = 1$ and $|\vec{c}| = |\vec{a}|$
- 17. Simplify $(\vec{a} \vec{b}) \cdot \{(\vec{b} \vec{c}) \times (\vec{c} \vec{a})\}$

- 18. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, find the value of $(\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy$
- 19. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, find the angle between \vec{a} and \vec{b} .
- 20. The magnitude of the vector product of the vector $\hat{\imath} + \hat{\jmath} + \hat{k}$ with a unit vector along the sum of the vector $2\hat{i} + 4\hat{j} 5\hat{k}$ and $\lambda \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ is equal to $\sqrt{2}$. Find the value of λ .
- 21. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, prove that $(\vec{a} \vec{d})$ is parallel to $(\vec{b} \vec{c})$, where $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.
- 22. Find a vector of magnitude $\sqrt{171}$ which is perpendicular to both of the vectors $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$.
- 23. Prove that the angle betwen two diagonals of a cube is $\cos^{-1}\left(\frac{1}{3}\right)$.
- 24. If $\vec{\alpha}=3\hat{i}-\hat{j}$ and $\vec{\beta}=2\hat{i}+\hat{j}+3\hat{k}$ then express $\vec{\beta}$ in the form of $\vec{\beta}=\vec{\beta}_1+\vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.
- 25. Find a unit vector perpendicular to plane ABC, when position vectors of A,B,C are $\widehat{3}i \widehat{j} + 2\widehat{k}$, $\widehat{i} \widehat{j} 3\widehat{k}$ and $4\widehat{i} \widehat{3}\widehat{j} + \widehat{k}$ respectively.
- 26. Find a unit vector in XY plane which makes an angle 45° with the vector $\hat{i} + \hat{j}$ and angle of 60° with the vector $3\hat{i} 4\hat{j}$.

192 [Class XII : Maths]

- 27. Suppose $\vec{a}=\lambda\hat{\imath}-7\hat{\jmath}+3\hat{k}$, $\vec{b}=\lambda\hat{\imath}+\hat{\jmath}+2\lambda\hat{k}$. If the angle between \vec{a} and \vec{b} is greater than 90° , then prove that λ satisfies the inequality– $7<\lambda<1$.
- 28. If \vec{a} and \vec{b} are two unit vectors such that $|\vec{a} + \vec{b}| = \sqrt{3}$ then find the value of $(2\vec{a} 5\vec{b})$. $(3\vec{a} + \vec{b})$.
- 29. Let $\vec{a} = 2\hat{i} + \hat{j} 3\hat{k}$, $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} \hat{j} + \hat{k}$. Find a vector \vec{d} such that $\vec{a} \cdot \vec{d} = 0$, $\vec{b} \cdot \vec{d} = 2$ and $\vec{c} \cdot \vec{d} = 4$.

Case Study Questions (4 Marks Each)

1. A farmer moves along the boundary of a triangular field PQR. Three vertices of the triangular field are P(2, 1, -2), Q(-1, 2, 1) and R(1, -4, -2) respectively.

On the basis of above information, answer the following questions:

- (i) Find the length of PQ.
- (ii) Find the ∠PQR
- (iii) Find the area of the $\triangle PQR$

OR

(iii) Find projection of QP on QR.

SELF ASSESSMENT-1

EACH OF THE FOLLOWING MCQ HAS ONE OPTION CORRECTION CHOOSE THE CORRECT OPTION.

1. A unit vector perpendicular to both $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is

$$(A)\,\hat{i}\,+\hat{j}\,+\hat{k}$$

$$(B)\,\hat{i}\,-\,\hat{j}\,+\hat{k}$$

$$(C)\frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k})$$

(D)
$$\frac{1}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k})$$

2. If $|\vec{a} \cdot \vec{b}| = 2$, $|\vec{a} \times \vec{b}| = 4$, then the value of $|\vec{a}|^2 |\vec{b}|^2$ is

3. The projection of vector $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$ on vector $\vec{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$ is

$$(A)\frac{9}{19}$$

(B)
$$\frac{9}{\sqrt{19}}$$

(C)
$$\frac{9}{\sqrt{6}}$$

$$(D)\frac{19}{9}$$

4. If \vec{a} is any vector, then the value of $(\vec{a} \times \hat{i})^2 + (\vec{a} \times \hat{j})^2 + (\vec{a} \times \hat{k})^2$ is

$$(A)|\vec{a}|^2$$

(B)
$$2|\vec{a}|^2$$

$$(C)3|\bar{a}|^2$$

(D)
$$4|\vec{a}|^2$$

5. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then the angle between \vec{a} and \vec{b} is

$$(A)\frac{\pi}{6}$$

(B)
$$\frac{\pi}{3}$$

$$(C)\,\frac{2\pi}{3}$$

(D)
$$\frac{5\pi}{3}$$

SELF ASSESSMENT-2

EACH OF THE FOLLOWING MCQ HAS ONE OPTION CORRECTION CHOOSE THE CORRECT OPTION.

1.	If a, b and $a + b$ are unit vectors. Then the value of $ a - b $ is				
	(A) 0	(B) 1	(C) √2	(D) $\sqrt{3}$	
2.	If \vec{a} and \vec{b} are two vectors such that $ \vec{a} = 2$, $ \vec{b} = 1$ and $\vec{a} \cdot \vec{b} = 1$, then the value of				
	$(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$ is				
	(A) 0	(B) 41	(C) 29	(D) 7	
3.	If $\vec{c} \cdot (\hat{i} + \hat{j}) = 2$, $\vec{c} \cdot (\hat{i} - \hat{j}) = 3$ and $\vec{c} \cdot \hat{k} = 0$, then the vector \vec{c} is				
	$(A)\frac{1}{2}(5\hat{i}+\hat{j})$	(E	$(3)\frac{1}{2}(5\hat{i}-\hat{j})$		
	(C) $\frac{1}{2}(\hat{i}-5\hat{j})$	([$0)\frac{1}{2}(\hat{i}+5\hat{j})$		

- 4. If the projection of $3\hat{i} + \lambda\hat{j} + \hat{k}$ on $\hat{i} + \hat{j}$ is $\sqrt{2}$ units, then the value λ is (A) 1 (B) -1 (C) 0 (D) 2
- 5. If $|\vec{a}| = 2$, $|\vec{b}| = 7$ and $\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} 6\hat{k}$, then the angle between \vec{a} and \vec{b} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

Answers

ONE MARK QUESTIONS

MCQ (1 Mark Each)

2. (b)
$$x = -1$$
, $y = 2$

3. (d)
$$\frac{1}{\sqrt{21}}(4\hat{i}+2\hat{j}-\hat{k})$$

4. (a)
$$\sqrt{\frac{5}{2}}(3\hat{i}+\hat{j})$$

5. (a)
$$\lambda = \frac{16}{5}$$

7. (b)
$$p = \frac{27}{2}$$

10. (d)
$$\lambda = \pm 2\sqrt{3}$$

11. (a)
$$\frac{1}{3}(-\hat{i}+2\hat{j}+2\hat{k})$$

13. (c)
$$5\sqrt{3}$$
 sq. units

14. (a)
$$\lambda = 5$$

18. (c)
$$\frac{\pi}{3}$$

19. (d)
$$|\vec{a}| = \sqrt{2} |\vec{b}|$$

TWO MARK QUESTIONS

1.
$$4(\sqrt{2}\hat{i} + \hat{j} + \hat{k})$$

4.
$$m = 8$$

7.
$$\lambda = 2$$

11.
$$2\sqrt{2}$$

12.
$$\overrightarrow{AC} = 3(\overrightarrow{a} - \overrightarrow{b}), \overrightarrow{BC} = 4(\overrightarrow{a} - \overrightarrow{b})$$

14.
$$p = -\frac{2}{3}, 2$$

16.
$$\frac{32}{7}$$
, $\frac{32}{49}$ (2i + 6j + 3k)

17.
$$x = -\frac{31}{12}$$
 $y = \frac{41}{12}$
18. $\frac{\pi}{4}$
19. $\frac{\pi}{2}$

18.
$$\frac{\pi}{4}$$

19.
$$\frac{\pi}{2}$$

THREE MARKS QUESTIONS

1.
$$x = 3, y = 3, 1:2$$

3.
$$\vec{d} = 7\hat{\imath} - 7\hat{\jmath} - 7\hat{k}$$

5.
$$\cos^{-1} \frac{1}{\sqrt{3}}$$

8.
$$\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$$

11.
$$\vec{b} = \frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$$

12.
$$\frac{4}{\sqrt{38}}$$
 units

13.
$$5\sqrt{2}$$

14.
$$(-\hat{\imath} - \hat{\jmath} - \hat{k}) + (7\hat{\imath} - 2\hat{\jmath} - 5\hat{k})$$

19.
$$60^{\circ}$$

20.
$$\lambda = 1$$

22.
$$\hat{i} - 11\hat{j} - 7\hat{k}$$

24.
$$\vec{\beta} = (\frac{3}{2}\hat{\imath} - \frac{1}{2}\hat{\jmath}) + (\frac{1}{2}\hat{\imath} + \frac{3}{2}\hat{\jmath} + 3\hat{k})$$

25.
$$\frac{-1}{\sqrt{165}} (10\hat{\imath} + 7\hat{\jmath} - 4\hat{k})$$

26.
$$\frac{13}{\sqrt{170}}\hat{i} + \frac{1}{\sqrt{170}}\hat{j}$$

28.
$$-\frac{11}{2}$$

29.
$$\vec{d} = 2\hat{i} - \hat{j} + \hat{k}$$

Case Study Questions

(i)
$$\sqrt{19}$$
 units

(ii)
$$\cos^{-1}\left(\frac{3}{\sqrt{19}}\right)$$

(iii)
$$\frac{7}{2}\sqrt{10}$$
 square units

OR

(iii) 3 units

SELF ASSESSMENT-1

- 1. (C) 3. (D) 5. (B)
- 2. (D)
- 4. (B)

SELF ASSESSMENT-2

- 1. (D) 3. (B) 5. (A)
- 2. (A) 4. (B)