




**Unit VII** 

**Dual Nature of Matter** 

## **And Radiation**

## Unit VII DUAL NATURE OF MATTER AND RADIATION

## **KEY POINTS**

- ☐ Light consists of individual photons whose energies are proportional to their frequencies.
- ☐ A photon is a quantum of electromagnetic energy : Energy of photon

$$E = hv = \frac{hc}{\lambda}$$

Momentum of a photon

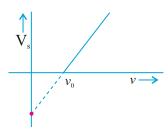
$$=\frac{hv}{c}=\frac{h}{\lambda}$$

Dynamic mass of photon

$$=\frac{hv}{c^2}=\frac{h}{c\lambda}$$

Rest mass of a photon is zero.

- □ **Photoelectric effect :** Photon of incident light energy interacts with a single electron and if energy of photon is equal to or greater than work function, the electron is emitted.
- $\square$  Max. kinetic energy of emitted electron =  $h(v v_0)$  Here  $v_0$  is the frequency below which no photoelectron is emitted and is called threshold frequency.
- $\square$  If 'V' is the stopping potential of photoelectron emission, then max. kinetic energy of photo electron  $E_K = qV$


□ Wavelength associated with the charge particle accelerated through a potential of V. volt.

$$_1 = \frac{h}{\sqrt{2 \text{mqV}}}$$

□ Wavelength associated with electron accelerated through a potential difference

$$l_e = \frac{12.27}{\sqrt{V}} \mathring{A}$$

□ Stopping potential versus frequency graph



 $v_0 \rightarrow$  thershold frequency

scope of the curve gives  $\frac{h}{e}$ The intercept on V axis gives  $\frac{\phi}{e}$  i.e.  $\frac{\text{Work function}}{e}$ 

☐ A moving body behaves in a certain way as though it has a wave nature having wavelength,

$$\lambda = \frac{h}{mv} = \frac{h}{p} = \frac{h}{\sqrt{2m \, \mathrm{E_k}}}$$

where E<sub>K</sub> is kinetic energy of movign particle

☐ Einestein's Photoelectric equation

$$\frac{1}{2}mv_{\text{max}}^2 = hv - hv_0$$

$$eV_0 = hv - hv_0$$