CHAPTER

Co-ordinate Geometry

Key Points

Cartesian Plane

Distance Formula
 Finding distance between two given points :

3. Distance of a point from origin :

Using distance formula

OA =
$$\sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}$$

4. Midpoint formula :

Coordinates of mid points of AB where $A(x_1, y_1)$ and $B(x_2, y_2)$ are :

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

5. Section formula:

The coordinates of a point P(x, y) which divides the line segment joining $A(x_1, y_1)$ and $B(x_2, y_2)$ internally in the ratio m : n are given by

$$P\left(x = \frac{mx_{2} + nx_{1}}{m + n}, y = \frac{my_{2} + ny_{1}}{m + n}\right)$$

$$P(x, y)$$

$$A m : n B$$

$$(x_{1}, y_{1})$$

6. Centroid of a triangle is given by :

8. If area of a triangle is zero then points are collinear and vice versa.

VERY SHORT ANSWER TYPE QUESTIONS

 $C(x_{3}, y_{3})$

Fill in the blanks :

7.

- 1. The distance of a point from the *y*-axis is called its *x*-coordinate or _____.
- 2. The distance of a point from the *x*-axis is called its ______ or ordinate.
- **3.** The point (5, 0) lies on _____ axis.
- **4.** A point which lies on *y*-axis are of the form _____.

 $B(x_2, y_2)$

- 5. A linear equation of the form ax + by + c = 0 when represented graphically gives a _____.
- 6. The distance of a point P(x, y) from the origin is _____

Multiple Choice Question :

7. *P* is a point on *x*-axis at a distance of 3 unit from *y*-axis to its left. The coordinates of *P* are :

(a) (3, 0) (b) ((0, 3)
-------------------	--------

(c) (-5, 0) (a) (0	, –))
--------------------	--------

- 8. The distance of P(3, -2) from y-axis is
 - (a) 3 units (b) 2 units

(c) - 2 units (d)	√13	units
---------------------	-----	-------

9. The co-ordinates of two ponts are (6, 0) and (0, -8). The co-ordinates of the mid points are

(a) (3, 4)	(b) $(3, -4)$
(c) (0, 0)	(d) (-4, 3)

10. If the distance between P(4, 0) and Q(0, x) is 5 units, the value of x will be

(<i>a</i>) 2	<i>(b)</i>	3

(c) 4 (d) 5

11. The co-ordinates of the point where line $\frac{x}{a} + \frac{y}{b} = 7$ intersects y-axis are

(a) (a, 0)	(b) (0, b)
(c) (0, 7b)	(d) (2a, 0)

12. The area of triangle OAB, the co-ordinates of whose vertices are A(4, 0), B(0, -7) and *O* origin, is :

(<i>a</i>) 11 sq. units	<i>(b)</i>	18 sq. un	its
		1	

(c) 28 sq. units (d) 14 sq. units

13. The distance between the points $P\left(-\frac{11}{3},5\right)$ and $Q\left(-\frac{2}{3},5\right)$ is

(a) 6 units	(b) 4 units
-------------	-------------

- (c) 3 units (d) 2 units
- 14. The distance between the points $(5 \cos 35^\circ, 0)$ and $(0, 5 \cos 55^\circ)$ is
 - (*a*) 10 units (*b*) 5 units
 - (c) 1 unit (d) 2 units

15. The co-ordinates of vertex A of \triangle ABC are (-4, 2) and a point D which is mid point of BC are (2, 5). The coordinates of centroid of \triangle ABC are

(c)
$$\left(-2, \frac{7}{3}\right)$$
 (d) $(0, 2)$

16. The distance between the line 2x + 4 = 0 and x - 5 = 0 is

- (*a*) 9 units (*b*) 1 unit
- (c) 5 units (d) 7 units
- 17. The perimeter of triangle formed by the points (0, 0), (2, 0) and (0, 2) is

$$(a) 4 units (b) 6 units$$

(c)
$$6\sqrt{2}$$
 units (d) $4+2\sqrt{2}$ units

18. If the centroid of the triangle formed by (9, a), (b, -4) and (7, 8) is (6, 8), then the value *a* and *b* are :

(a) $a = 4, b = 5$	(b) $a = 5, b = 4$
(c) $a = 5, b = 2$	(d) $a = 20, b = 2$

VERY SHORT ANSWER TYPE QUESTIONS

19. The centre of circle having end points of its diameter as (-4, 2) and (4, -3) is

(a)
$$(2, -1)$$
 (b) $(0, -1)$
(c) $(0, -\frac{1}{2})$ (d) $(4, -\frac{5}{2})$ (CBSE 2020 Basic)

20. The distance between the points (0, 0) and (a - b, a + b) is

(a)
$$2\sqrt{ab}$$
 (b) $\sqrt{2a^2 + ab}$

(c)
$$2\sqrt{a^2+b^2}$$
 (d) $\sqrt{2a^2+2b^2}$ (CBSE 2020 Standard)

SHORT ANSWER TYPE QUESTIONS-I

21. For what value of P, the points (2, 1), (p, -1) and (-1, 3) are collinear.

22. Find the area of triangle formed by A(0, 0), B(4, 0) and C(0, 9)

(CBSE 2020 Basic)

- **23.** Find the point of trisection of the line segment joining the points (1, -2) and (-3, 4).
- 24. The midpoints of the sides of a triangle are (3, 4), (4, 1) and (2, 0). Find the vertices of the triangle.
- 25. A circle has its centre at (4, 4). If one end of a diameter is (4, 0) then find the coordinates of the other end. (CBSE 2020 Standard)
- **26.** Find the ratio in which P(4, m) divides the line segment joining the points A(2, 3) and B(6, -3). Hence find m. (CBSE 2018)
- 27. Show that the points (-2, 3), (8, 3) and (6, 7) are the vertices of a right angle triangle.
- **28.** Find the point on y-axis which is equidistant from the points (5, -2) and (-3, 2).

(CBSE 2019)

- **29.** Find the ratio in which *y*-axis divides the line segment joining the points A(5, -6) and B(-1, -4).
- **30.** Find the co-ordinates of a centroid of a triangle whose vertices are (3, -5), (-7, 4) and (10, -2).
- **31.** Find the relation between x and y such that the points (x, y) is equidistant from the points (7, 1) and (3, 5).
- **32.** Find the ratio in which the segment joining the points (1, -3) and (4, 5) is divided by *x*-axis. Also find the coordinates of the point on *x*-axis.

(CBSE 2019)

- **33.** What is the value of a if the points (3, 5) and (7, 1) are equidistant from the point (*a*, 0) ?
- **34.** Find a relation between x and y if the points A(x, y), B(-4, 6) and C(-2, 3) are collinear.
- **35.** If the points A(2, 0), B(6, 1) and C(p, q) from a triangle of area 12 sq units (positive only) and 2p + q = 10, then find the values of p and q.

(CBSE 2020 Standard)

36. Name the type of triangle formed by the points A(-5, 6), B(-4, -2) and C(7, 5).

(NCERT Exempler)

- **37.** Find the points on the *x*-axis which are at a distance of $2\sqrt{5}$ from the point (7, -4). How many such points are there? (NCERT Exempler)
- **38.** A line intersects the *y*-axis and *x*-axis at the point *P* and *Q*. If (2, -5) is the midpoint of *PQ* then find the co-ordinates of *P* and *Q*. (CBSE 2017)
- **39.** If A(-2, 1), B(*a*, 0), C(4, *b*) and D(1, 2) are the vertices of a parallelogram ABCD, find the values of *a* and *b*. Hence find the lengths of its sides.

(CBSE 2018)

40. Let *P* and *Q* be the points of trisection of the line segment joining the points A(2, -2) and B(-7, 4) such that *P* is nearer to *A*. Find the co-ordinates of *P* and *Q*.

SHORT ANSWER TYPE QUESTIONS-II

- 41. The line segment joining the points A(2, 1) and B(5, -8) is trisected at the point *P* and *Q* such that *P* is nearer to A. If *P* also lies on the line given by 2x y + k = 0, find the value of *k*. (CBSE 2019)
- 42. Find the ratio in which the line x 3y = 0 divides the line segment joining the points (-2, -5) and (6, 3). Find the co-ordinates of the point of intersection.

(HOTS)

43. Point A lies on the line segment XY joining X(6, -6) and Y(-4, -1) in such a way that $\frac{XA}{XY} = \frac{2}{5}$. If point A also lies on the line 3x + k(y + 1) = 0, find the value of *k*.

(HOTS)

- 44. Find the area of the triangle formed by joining the mid points of the sides of the triangle ABC, whose vertices are A(0, -1), B(2, 1) and C(0, 3).
- **45.** Find the value of k so that the area of triangle ABC with A(k + 1, 1), B(4, -3) and C(7, -k) is 6 square units.
- 46. Point P divides the line segment joining the points A(2, 1) and B(5, -8) such

that $\frac{AP}{PB} = \frac{1}{3}$. If *P* lies on the line 2x - y + k = 0. Find the value of *k*.

Mathematics-X

(110)

- **47.** If the distances of P(x, y) from A(5, 1) and B(-1, 5) are equal then prove that 3x = 2y. (CBSE 2017)
- **48.** In what ratio does the point $\left(\frac{24}{11}, y\right)$ divides the line segment joining the points P(2, -2) and Q(3, 7)? (CBSE 2017)
- **49.** If A(-3, 2), B(x, y) and C(1, 4) are the vertices of an isosceles triangle with AB = BC. Find the value of (2x + y).
- 50. If the point P(3, 4) is equidistant from the points A(a + b, b a) and B(a b, a + b) then prove that 3b 4a = 0.

LONG ANSWER TYPE QUESTIONS-III

- **51.** Find the area of the quadrilateral ABCD whose vertices are A(-4, -3), B(3, -1), C(0, 5) and D(-4, 2). (CBSE 2020 Standard)
- 52. If P(x, y) is any point on the line joining A(a, 0) and B(0, b) then show that $\frac{x}{a} + \frac{y}{b} = 1.$
- **53.** If the points (x, y), (-5, -2) and (3, -5) are collinear, prove that 3x + 8y + 31 = 0.
- 54. Find the relation between x and y if A(x, y), B(-2, 3) and C(2, 1) form an isosceles triangle with AB = AC.
- **55.** Prove that the point $(x, \sqrt{1-x^2})$ is at a distance of 1 unit from the origin.
- 56. If the points A(k+1, 2k), B(3k, 2k+3) and C(5k-1, 5k) are collinear then find the value of k. (CBSE 2017)
- 57. If the points (a, b), (c, d) and (a c, b d) are collinear show that bc = ad.
- **58.** Find the co-ordinates of the circumcenter of the triangle whose vertices are (3, 7), (0, 6) and (-1, 5). Find the circumradius. **(HOTS)**
- **59.** In a triangle PQR, the co-ordinates of points *P*, *Q* and *R* are (3, 2), (6, 4) and (9, 3) respectively. Find the co-ordinates of centroid G. Also find the areas of Δ PQG and Δ PRG.
- 60. If the points (5, 4) and (*x*, *y*) are equidistant from the point (4, 5), prove that $x^2 + y^2 8x 10y + 39 = 0$.

ANSWERS AND HINTS

VERY SHORT ANSWER TYPE QUESTIONS-I

1.	abscissa	2. y-coordinate
3.	<i>x</i> -axis	4. (0, <i>y</i>)
5.	straight line	6. $\sqrt{x^2 + y^2}$
7.	(<i>iii</i>) (- 3, 0)	8. (i) 3 units
9.	(ii) (3, – 4)	10. (ii) 3
11.	(iii) (0, 7 <i>b</i>)	12. (iv) 14 sq. units
13.	(c) 3 units	14. (b) 5 units
15.	(a) (0, 4)	16. (d) 7 units
17.	(d) $(4+2\sqrt{2})$ units	18. (d) $a = 20, b = 2$
19.	(c)	20. (d)
21.	P = 3	22. 18 sq. units
	1: 1: 1	
23.	A P Q (1,-2)	B (-3, 4)
	AP : PB = 1 : 2	
	AQ : QB = 2 : 1	
	$P = \left(-\frac{1}{3}, 0\right)$	
	$Q = \left(-\frac{5}{3}, 2\right)$	
24.	Let $A(x, y_1) = B(x_1, y_2) = C(x_1, y_2) a$	re vertices of given trig

24. Let $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ are vertices of given triangle Let Midpoints of AB = D(3, 4) Midpoints of BC = E(4, 1) Midpoints of AC = F(2, 0)

Mathematics-X

(112)

Apply Midpoint formula on AB, BC, AC We get

	$x_1 + x_2 = 6$,	$y_1 + y_2 = 8$
	$x_2 + x_3 = 8$,	$y_2 + y_3 = 2$
	$x_1 + x_3 = 4$,	$y_1 + y_3 = 0$
	Solving we get	
	$x_1 = 1$	$y_1 = 3$
	$x_2 = 5$	$y_2 = 5$
	$x_3 = 3$	$y_3 = -3$
	\therefore A(1, 3), B(5, 5), C((3, -3)
25.	(4, 8)	
26.	Ratio 1 : 1, m = 0	
27.	Show using pythagora	as theorem and
28.	(0, -2)	
29.	5:1	
30.	(2, -1)	

distance formula.

- **31.** x y = 2
- **32.** 3:5; $\left(\frac{17}{8}, 0\right)$
- **33.** *a* = 2
- **34.** 3x = -2y
- **35.** p = 2, q = 6
- **36.** Using distance formula, scalene triangle.
- **37.** x = 1, x = -15

Two such points are there.

- **38.** (4, -10)
- **39.** $a = 1, b = 1, AB = CD = \sqrt{10}, AD = BC = \sqrt{10}$
- **40.** *P*(-1, 0), *Q*(-4, 2)

41. P(3, -2)

Put value of x = 3, y = -2 is equation, then k = -8.

42. Let P(x, y) be the point and m : n is the ratio

then
$$x = \frac{6n - 2m}{m + n}$$
, $y = \frac{3n - 5m}{m + n}$...(1)

From equation of line $x = 3y \Rightarrow \frac{x}{y} = 3$

By putting
$$x = 3y$$
 or $\frac{x}{y} = 3$ is (1)
 $m : n = 3 : 13$

Then
$$P(x, y) = \left(\frac{9}{2}, \frac{3}{2}\right)^{3}$$

43. Find
$$\frac{XA}{AY} = \frac{2}{3}$$
.

Let A(x, y) is the point. x = 2, y = -4 A(2, -4)Put x = 2 and y = -4 in equation. $\therefore K = 2$

45.
$$K = 3$$

46.
$$K = \frac{-17}{4}$$

- 47. PA = PB, Use distance formula
- **48.** 2 : 9

49.
$$2x + y = 1$$

- **50.** 3b 4a = 0 proved by using distance formula.
- **51.** Area of quadrilateral = 34 sq units.
- **52.** Prove by section formula.
- **53.** Prove by area of $\Delta = 0$ if points are collinear.
- 54. Prove by distance formula.

- **55.** Prove by distance formula.
- **56.** $k = \frac{1}{2}, k = -2$
- **58.** Find co-ordinates of mid points of AB, BC, CA then DO = OE = OF

then (circumcentre) $O(x, y) = \left(1, \frac{13}{2}\right)$

circumradius AO = $\frac{\sqrt{17}}{2}$.

59. G(x, y) = (6, 3)ar \triangle PQG = $\frac{3}{2}$ sq. units

ar
$$\triangle$$
 PRG = $\frac{3}{2}$ sq. units

60. Use distance formula

PRACTICE-TEST

Coordinate Geometry

Time : 1 Hr.

M.M. : 20

SECTION - A

1.	Find the value of <i>m</i> for which the points (3, 5), (<i>m</i> , 6) and $\left(\frac{1}{2}, \frac{15}{2}\right)$ are collinear.
	1
2.	What is the distance between the points $A(c, 0)$ and $B(0, -c)$ 1
3.	The distance of point $P(-6, 8)$ from the origin is . 1
4.	Find the value of 'a' so that the point (3, a) lies on the line segment $2x - 3y = 5$.
	1

SECTION B

5. Fo	r what value of	p, the points ((-3, 9), (2,	(p) and $(4, -5)$) are collinear.	2
--------------	-----------------	-----------------	--------------	-------------------	------------------	---

6. If the points A(8, 6) and B(x, 10) lie on the circle whose centre is (4, 6) then find the value of x.

7. Find the perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0). 2

SECTION C

- 8. Show that the points A(-3, 2), B(-5, -5), C(2, -3) and D(4, 4) are the vertices of a rhombus.
 3
- 9. Find the ratio in which the point (2, y) divides the line segment joining the points A(-2, 2) and B(3, 7). Also find the value of y.
 3

SECTION D

10. If the point P divides the line segment joining the points A(-2, -2) and B(2, -2)

4) such that
$$\frac{AP}{AB} = \frac{3}{7}$$
, then find the coordinate of P. 4

