

PRACTICE PAPER 06 CHAPTER 06 LINES AND ANGLES

SUBJECT: MATHEMATICS

MAX. MARKS : 40 DURATION : 1½ hrs

CLASS : IX

(a) 55°

General Instructions:

- (i). All questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

<u>SECTION – A</u> Questions 1 to 10 carry 1 mark each.

- Aditya was given a riddle by Pragya who stated that an angle is 24° less than its complementary angle. The angle's measure is:
 (a) 36°
 (b) 33°
 (c) 66°
 (d) 57°
- 2. If the ratio of two co-interior angles on the same side of the transversal is 7 : 8, the bigger angle of the two angles is:
 (a) 54°
 (b) 100°
 (c) 96°
 (d) 84°
- **3.** In the given figure, lines XY and MN intersect at O. If $\angle XOP + \angle YON = 85^{\circ}$ and $\angle XOM = 45^{\circ}$, $\angle YON$ is:

4. In the adjoining figure, if $\angle AOC = 48^\circ$, then the value of a is:

5. In the given figure, if PM || NO, \angle MNO = 55°, and LQ \perp MN, then \angle PLQ is equal to:

6. In the given figure, if OB || CD, \angle BCD = 40° and AE \perp BC then \angle OAE is equal to:

7. In figure if x : y = 1 : 4, then values of x and y are respectively

(a) 36° and 144° (b) 18° and 72° (c) 144° and 36° (d) 72° and 18°

8. An angle is 20° more than three times the given angle. If the two angles are supplementary, then the angles are

(a)
$$\frac{70^{\circ}}{4}, \frac{290^{\circ}}{4}$$
 (b) $40^{\circ}, 140^{\circ}$ (c) $60^{\circ}, 120^{\circ}$ (d) $40^{\circ}, 50^{\circ}$

In the following questions 9 and 10, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 9. Assertion (A): Two adjacent angles always form a linear pair.Reason (R): In a linear pair of angles, two non-common arms are opposite rays.
- 10. Assertion (A): If two interior angles on the same side of a transversal intersecting two parallel lines are in the ratio 5 : 4, then the greater of the two angles is 100⁰.
 Reason (R): If a transversal intersects two parallel lines, then the sum of the interior angles on the same side of the transversal is 180⁰.

<u>SECTION – B</u> Questions 11 to 14 carry 2 marks each.

11. In the given figure, AB || CD, $\angle 2 = 120^{\circ} + x$ and $\angle 6 = 6x$. Find the measure of $\angle 2$ and $\angle 6$.

12. In the given figure, PQ || RS, and x : y = 2 : 3, then find the value of y.

13. In given figure, AD || BC and EF || AB. \angle DAB = 60°. Find \angle CEF.

14. In the below figure, if PQ || RS, \angle MXQ = 135° and \angle MYR = 40°, find \angle XMY.

<u>SECTION – C</u> Questions 15 to 17 carry 3 marks each.

15. While playing piano Arijit Singh's daughter found that the treble strings of a grand piano are parallel. When view from the above, the bass strings are transversal. Find the x and y in the figure given below.

16. In figure, OP bisects $\angle AOC$, OQ bisects $\angle BOC$ and OP \perp OQ. Show that the points A, O and B are collinear.

17. In the given figure, $\angle 1 = 55^\circ$, $\angle 2 = 20^\circ$, $\angle 3 = 35^\circ$ and $\angle 4 = 145^\circ$. Prove that AB || CD.

<u>SECTION – D</u> Questions 18 carry 5 marks.

18. In the given figure, EF is the transversal to two parallel lines AB and CD. GM and HL are the bisectors of the corresponding angles EGB and EHD. Prove that GM || HL.

<u>SECTION – E (Case Study Based Questions)</u>

Questions 19 to 20 carry 4 marks each.

19. Ritesh and Sheetal are cousins and both went to visit Mughal Garden. Before going, they searched the location of their destination on a map. During searching, they found on map that Akbar Road and M.G. road form a right angle at their intersection point and Hudson lane form 57° angle with M.G. road.

(a) What is the measure of acute angle between Akbar Road and Hudson lane? [1]

(b) If Ritesh is standing on M.G Road in the west direction and Sheetal is on H.M road, what is the shortest angle they can cover in order to meet? [2]

(c) Find the measure of reflex angle formed between M.G Road [in east direction] with Hudson lane. [1]

20. Two lines are parallel to each other, if the distance between these 2 lines always remains constant throughout and they never meet. There are various examples of parallel lines that we see in our daily life like railway line, 2 steps of ladder, opposite sides of a table etc. A line which cuts a pair of parallel lines is called a transversal as shown in the figure.

Answer the following questions:

- (a) If $\angle 5 = 65^{\circ}$. Then what is the $\angle 8$? (1)
- (b) If $\angle 6 = 2x$ and $\angle 1 = 70^{\circ}$. Then find the value of x. (1)
- (c) If $\angle 6 : \angle 5 = 2 : 3$ then find the value of $\angle 7$. (2)

.....

PRACTICE PAPER 06 CHAPTER 06 LINES AND ANGLES (ANSWERS)

SUBJECT: MATHEMATICS

MAX. MARKS : 40 DURATION : 1½ hrs

CLASS : IX

General Instructions:

- (i). All questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

<u>SECTION – A</u> Questions 1 to 10 carry 1 mark each.

1. Aditya was given a riddle by Pragya who stated that an angle is 24° less than its complementary angle. The angle's measure is:

(a) 36° (b) 33° (c) 66° (d) 57° Ans. (b) 33° Let the angle be x. Its complementary angle = $x + 24^{\circ}$ $\Rightarrow x + x + 24^{\circ} = 90^{\circ}$ $\Rightarrow 2x = 90^{\circ} - 24^{\circ} \Rightarrow 2x = 66^{\circ} \Rightarrow x = 33^{\circ}$

2. If the ratio of two co-interior angles on the same side of the transversal is 7 : 8, the bigger angle of the two angles is:

(a) 54° (b) 100° (c) 96° (d) 84° Ans. (c) 96° Let the angles be 7x and 8x Sum of co-interior angles is 180° $\Rightarrow 7x + 8x = 180^{\circ}$ $\Rightarrow 15x = 180^{\circ} \Rightarrow x = 12^{\circ}$ Bigger angle is $8x = 8 \times 12^{\circ} = 96^{\circ}$

3. In the given figure, lines XY and MN intersect at O. If $\angle XOP + \angle YON = 85^{\circ}$ and $\angle XOM = 45^{\circ}$, $\angle YON$ is:

4. In the adjoining figure, if $\angle AOC = 48^{\circ}$, then the value of a is:

5. In the given figure, if PM || NO, \angle MNO = 55°, and LQ \perp MN, then \angle PLQ is equal to:

(a) 110° (b) 135° Ans. (c) 130° Given: OB || CD, \angle BCD = 40° and AE \perp BC, Since, OB || CD and BC is a transversal $\therefore \angle BCD = \angle OBC$ [Alternate angles] $\Rightarrow \angle BCD = \angle ABE$ $\Rightarrow \angle BCD = \angle ABE = 40^{\circ}$ [Given] Now, $\angle OAE = \angle AEB + \angle ABE$ [Exterior angle property of a triangle] $\Rightarrow \angle OAE = 90^{\circ} + 40^{\circ}$ $\Rightarrow \angle OAE = 130^{\circ}$

7. In figure if x : y = 1 : 4, then values of x and y are respectively

(a) 36° and 144° (b) 18° and 72° (c) 144° and 36° (d) 72° and 18° Ans: Given, x : y = 1 : 4 $\Rightarrow \frac{x}{y} = \frac{1}{4} = \frac{k}{4k} \Rightarrow x = k$ and y = 4kFrom the figure, $x + y = 180^{\circ}$ (Linear pair axiom) $\Rightarrow k + 4k = 180^{\circ} \Rightarrow 5k = 180^{\circ} \Rightarrow k = 36^{\circ}$ Hence, $x = k = 36^{\circ}$ and $y = 4k = 4 \times 36^{\circ} = 144^{\circ}$ Correct option is (a).

8. An angle is 20° more than three times the given angle. If the two angles are supplementary, then the angles are

(a)
$$\frac{70^{\circ}}{4}, \frac{290^{\circ}}{4}$$
 (b) 40°, 140° (c) 60°, 120° (d) 40°, 50°

Ans: Let an angle be x. Then, other angle $= 3x + 20^{\circ}$ Since the two angles are supplementary, so

 $x + 3x + 20^{\circ} = 180^{\circ} \Rightarrow 4x = 180^{\circ} - 20^{\circ} = 160^{\circ} \Rightarrow x = \frac{160^{\circ}}{4} = 40^{\circ}$

So, one angle = 40° . Then, other angle = $3x + 20^{\circ} = 3 \times 40^{\circ} + 20^{\circ} = 120^{\circ} + 20^{\circ} = 140^{\circ}$ Correct option is (b).

In the following questions 9 and 10, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.

(c) A is true but R is false.

- (d) A is false but R is true.
- 9. Assertion (A): Two adjacent angles always form a linear pair.

Reason (R): In a linear pair of angles, two non-common arms are opposite rays.

Ans. (d) Assertion (A) is false but reason (R) is true.

Adjacent angles with opposite rays as non-common arms are called the linear pair. Hence, reason is true.

Two adjacent angles form a linear pair if non-common arms are opposite rays. Hence, assertion is false.

10. Assertion (A): If two interior angles on the same side of a transversal intersecting two parallel lines are in the ratio 5 : 4, then the greater of the two angles is 100⁰.
Reason (R): If a transversal intersects two parallel lines, then the sum of the interior angles on the same side of the transversal is 180⁰.

Ans: (a) Both A and R are true and R is the correct explanation of A.

SECTION – B Questions 11 to 14 carry 2 marks each.

11. In the given figure, AB || CD, $\angle 2 = 120^\circ + x$ and $\angle 6 = 6x$. Find the measure of $\angle 2$ and $\angle 6$.

Ans: Given AB || CD, $\Rightarrow \angle 2 = \angle 6 \qquad \text{(corresponding angles)}$ $\Rightarrow 120^\circ + x = 6x \qquad (\angle 2 = 120 + x)$ $\Rightarrow 120^\circ = 6x - x = 5x$ $\Rightarrow x = \frac{120^\circ}{5} = 24^\circ$ $\therefore \angle 2 = 120^\circ + x = 120^\circ + 24^\circ = 144^\circ$ and $\angle 6 = 6x = 6 \times 24^\circ = 144^\circ$

12. In the given figure, PQ || RS, and x : y = 2 : 3, then find the value of y.

13. In given figure, AD || BC and EF || AB. \angle DAB = 60°. Find \angle CEF.

Ans. $\angle DAB + \angle CBA = 180^{\circ}$ [Co-interior angles] $\Rightarrow 60^{\circ} + \angle CBA = 180^{\circ} \Rightarrow \angle CBA = 180^{\circ} - 60^{\circ} \Rightarrow \angle CBA = 120^{\circ}$ Since, EF || AB, $\therefore \angle ABE = \angle BEF = 120^{\circ}$ [Alternate angles] Now, $\angle BEF + \angle CEF = 180^{\circ}$ [Linear pair] $\Rightarrow 120^{\circ} + \angle CEF = 180^{\circ}$ $\Rightarrow \angle CEF = 60^{\circ}$

14. In the below figure, if PQ || RS, \angle MXQ = 135° and \angle MYR = 40°, find \angle XMY.

Ans: Here, we draw a line AB parallel to line PQ, through point M. Now, AB || PQ and PQ || RS.

Therefore, AB || RS (Why?) Now, $\angle QXM + \angle XMB = 180^{\circ}$ (AB || PQ, Interior angles on the same side of the transversal XM) But $\angle QXM = 135^{\circ}$ So, $135^{\circ} + \angle XMB = 180^{\circ}$ Therefore, $\angle XMB = 45^{\circ}$ (1) Now, $\angle BMY = \angle MYR$ (AB || RS, Alternate angles) Therefore, $\angle BMY = 40^{\circ}$ (2) Adding (1) and (2), you get $\angle XMB + \angle BMY = 45^{\circ} + 40^{\circ}$ That is, $\angle XMY = 85^{\circ}$

SMART ACHIEVERS

<u>SECTION – C</u> Questions 15 to 17 carry 3 marks each.

15. While playing piano Arijit Singh's daughter found that the treble strings of a grand piano are parallel. When view from the above, the bass strings are transversal. Find the x and y in the figure given below.

Ans. By the alternate exterior angle $[25x + 5y]^\circ = 125^\circ \dots (i)$ By the corresponding angles $[25x + 4y]^\circ = 120^\circ \dots (ii)$ Subtract eq. (ii) from the eq. (i) we get $[25x + 5y]^\circ - [25x + 4y]^\circ = 125^\circ - 120^\circ$ $\Rightarrow y = 5^\circ$ Putting the value of x in eq. (i), we get 25x + 5[5] = 125 $\Rightarrow 25x + 25 = 125$ $\Rightarrow 25x = 125 - 25$ $\Rightarrow 25x = 100 \Rightarrow x = 4$

16. In figure, OP bisects $\angle AOC$, OQ bisects $\angle BOC$ and OP \perp OQ. Show that the points A, O and B are collinear.

17. In the given figure, $\angle 1 = 55^\circ$, $\angle 2 = 20^\circ$, $\angle 3 = 35^\circ$ and $\angle 4 = 145^\circ$. Prove that AB || CD.

Ans: We have, $\angle BMN = \angle 2 + \angle 3 = 20^{\circ} + 35^{\circ} = 55^{\circ} = \angle 1 = \angle ABM$. But these are the alternate angles formed by transversal BM on AB and MN. So, by converse of alternate interior angles theorem. AB || MN ...(i) Now, $\angle 3 + \angle 4 = 35^{\circ} + 145^{\circ} = 180^{\circ}$ This, shows that sum of the co-interior angles is 180°. Hence, CD || MN ...(ii) From (i) and (ii), we have AB || CD. Hence proved.

<u>SECTION – D</u> Questions 18 carry 5 marks.

18. In the given figure, EF is the transversal to two parallel lines AB and CD. GM and HL are the bisectors of the corresponding angles EGB and EHD. Prove that GM || HL.

Ans: Given: AB || CD and EF is transversal that intersects AB and CD at G and H respectively $\therefore \angle EGB = \angle GHD$...(i) (Corresponding angles) Now, GM is the angle bisector of $\angle EGB$ $\Rightarrow \angle EGM = \angle MGB = \frac{1}{2}\angle EGB$ $\Rightarrow \angle EGB = 2\angle EGM$...(ii) Similarly, HL is the angle bisector of $\angle GHD$ $\Rightarrow \angle GHL = \angle LHD = \frac{1}{2}\angle GHD$...(iii)

Substituting from (ii) and (iii) in (i), we get $2\angle EGM = 2\angle GHL$ $\Rightarrow \angle EGM = \angle GHL$ But these are equal corresponding angles formed by transversal EF with GM and HL. Hence, GM || HL(Converse of corresponding angles axiom)

<u>SECTION – E (Case Study Based Questions)</u> Questions 19 to 20 carry 4 marks each.

19. Ritesh and Sheetal are cousins and both went to visit Mughal Garden. Before going, they searched the location of their destination on a map. During searching, they found on map that

Akbar Road and M.G. road form a right angle at their intersection point and Hudson lane form 57° angle with M.G. road.

(a) What is the measure of acute angle between Akbar Road and Hudson lane? [1]

(b) If Ritesh is standing on M.G Road in the west direction and Sheetal is on H.M road, what is the shortest angle they can cover in order to meet? [2]

(c) Find the measure of reflex angle formed between M.G Road [in east direction] with Hudson lane. [1]

Ans. (a) From the given figure, Hudson Lane forms 57° with M.G road and Akbar Road and M.G Road form a 90° at their intersection point.

Therefore, the required angle between Akbar Road and Hudson lane = $90^{\circ} - 57^{\circ} = 33^{\circ}$.

(b) Sheetal travels from H.M road to M.G road [East] to Hudson to Akbar road and then to M.G road west.

So, the measure of angle she cover = $37^{\circ} + 90^{\circ} + 90^{\circ} = 217^{\circ}$.

But if she goes from H.M road to south of BT road and then to M.G road [west],

Then, the measure of angle, she cover = $53^{\circ} + 90^{\circ} = 143^{\circ}$

Hence, the shortest angle she has to cover will be 143°

(c) The required measure of reflex angle formed between M.G Road [in east direction] with Hudson lane = $360^{\circ} - 57^{\circ} = 303^{\circ}$.

20. Two lines are parallel to each other, if the distance between these 2 lines always remains constant throughout and they never meet. There are various examples of parallel lines that we see in our daily life like railway line, 2 steps of ladder, opposite sides of a table etc. A line which cuts a pair of parallel lines is called a transversal as shown in the figure.

Answer the following questions:

(a) If $\angle 5 = 65^{\circ}$. Then what is the $\angle 8$? (1)(b) If $\angle 6 = 2x$ and $\angle 1 = 70^{\circ}$. Then find the value of x. (1) (c) If $\angle 6 : \angle 5 = 2 : 3$ then find the value of $\angle 7$. (2) Ans: (a) Since $CD \mid \mid AB$ and LM is transversal, $\angle 5$ and $\angle 8$ are the alternate exterior angles. $\therefore \angle 5 = \angle 8 \text{ or } \angle 8 = \angle 5 = 65^{\circ}$ (b) Since *CD* | | *AB* and *LM* is transversal, ∴ ∠5 = 70° (Corresponding angles) and $\angle 6 + \angle 5 = 180^\circ$ (Linear pair axiom) $\Rightarrow 2x + 70^\circ = 180^\circ$ $\Rightarrow 2x = 110^{\circ} \Rightarrow x = 55^{\circ}.$ (c) Let $\angle 6 = 2k$ and $\angle 5 = 3k$ Now, $\angle 6 + \angle 5 = 180^{\circ}$ (Linear pair axiom) $\Rightarrow 2k + 3k = 180^{\circ}$ $\Rightarrow 5k = 180^{\circ} \Rightarrow k = 36^{\circ}$ $\therefore \ \angle 6 = 2k = 2 \times 36^\circ = 72^\circ$ Now, $\angle 6$ and $\angle 7$ are the alternate exterior angles. $\therefore \ \angle 6 = \angle 7 \text{ or } \angle 7 = \angle 6 = 72^{\circ}$

.....

