

PRACTICE PAPER 01 CHAPTER 01 NUMBER SYSTEM

SUBJECT: MATHEMATICS

MAX. MARKS : 40 DURATION : 1½ hrs

CLASS : IX

General Instructions:

- (i). All questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

<u>SECTION – A</u> Questions 1 to 10 carry 1 mark each.

1.	On simplifying $(\sqrt{3} - \sqrt{7})^2$, we get			
	(a) $2 - \sqrt{21}$	(b) $5 - \sqrt{21}$	(c) $2(5-\sqrt{21})$) (d) $10 - \sqrt{21}$
2.		$\frac{2+\sqrt{48}}{1+\sqrt{12}}$ is equal to		
	(a) $\sqrt{2}$		(c) 4	(d) 8
3.	The simplified fo	rm of $13^{\frac{1}{5}} \div 13^{\frac{1}{3}}$ is		
	(a) $13^{\frac{2}{15}}$		(c) $13^{\frac{-1}{15}}$	(d) $13^{\frac{-2}{15}}$
4.	On dividing $6\sqrt{27}$ by $2\sqrt{3}$, we get			
	(a) $3\sqrt{9}$	(b) 6	(c) 9	(d) none of these
5.	The value of $\sqrt{10}$ (a) $5\sqrt{6}$	times $\sqrt{15}$ is equal to (b) $\sqrt{25}$	(c) 10√5	(d) √5
6.	Value of (256) ^{0.16} (a) 4		(c) 64	(d) 256.25
7.	$\left(-\frac{1}{27}\right)^{\frac{-2}{3}}$ is equal to			
	(a) $8\left(\frac{1}{27}\right)^{\frac{-2}{3}}$	(b) 9	(c) $\frac{1}{9}$	(d) $27\sqrt{27}$
8.	Value of $\sqrt[4]{(81)^{-2}}$	is		
	(a) $\frac{1}{9}$		(c) 9	(d) $\frac{1}{81}$

In the following questions 9 and 10, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.

9. Assertion (A): Rational number lying between two rational numbers x and y is $\frac{1}{2}(x+y)$.

Reason (**R**): There is one rational number lying between any two rational numbers.

10. Assertion (A): $2 + \sqrt{3}$ is an irrational number. Reason (R): Sum of a rational number and an irrational numbers is always an irrational number.

<u>SECTION – B</u> Questions 11 to 14 carry 2 marks each.

- **11.** Find the value of x for which $\left(\frac{3}{4}\right)^6 \times \left(\frac{16}{9}\right)^5 = \left(\frac{4}{3}\right)^{x+2}$.
- **12.** Simplify $\sqrt[4]{81} 8(\sqrt[3]{216}) + 15(\sqrt[5]{32}) + \sqrt{225}$.

13. Simplify $\frac{6-4\sqrt{3}}{6+4\sqrt{3}}$ by rationalising the denominator.

14. Represent $\sqrt{2}$ on the real number line.

<u>SECTION – C</u> Questions 15 to 17 carry 3 marks each.

15. Find the value of
$$\frac{4}{(216)^{-\frac{2}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}}$$

16. Find the value of *a* and *b*, if $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$

17. Simplify $\frac{4+\sqrt{5}}{4-\sqrt{5}} + \frac{4-\sqrt{5}}{4+\sqrt{5}}$ by using rationalizing the denominator


<u>SECTION – D</u> Questions 18 carry 5 marks each.

18. Prove that $\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5$.

<u>SECTION – E (Case Study Based Questions)</u> Questions 19 to 20 carry 4 marks each.

- 19. Mr. Kumar, a Mathematics teacher explained some key points of unit 1 of class IX to his students. Some are given here.
 - There are infinite rational numbers between any two rational numbers.

- Rationalisation of a denominator means to change the irrational denominator to rational form.
- A number is irrational if its decimal form is non-terminating non-recurring

On the basis of these key points, Answer the following questions

- (a) What is the reciprocal of $2 + \sqrt{3}$?
- (b) Find a rational number between $\sqrt{2}$ and $\sqrt{3}$
- (c) Simplify $(\sqrt{3} \sqrt{7})^3$

OR

(c) Express $\frac{4}{7}$ in decimal form and state the kind of decimal expansion.

20. In January 2021, the vaccination drive for COVID -19 started in 7 states of a country. More than 60% of the people were vaccinated in 4 states out of 7 states, In one of the state vaccination drive has not been started due to flood although vaccine dose was supplied to that state in advance. In February 2021, 4 more states were included in this drive and 2 states have got remarkable response from the people and more than 80% of the population got vaccinated there. Using this information answer the following questions:

(a) In January 2021, more than 60% of people were vaccinated in 4 states out of 7 states. Find the decimal representation of $\frac{4}{7}$ (2) (b) In 2 states out of 11 states, more than 80% of people participated in vaccination drive in two months. Find the decimal form of $\frac{2}{11}$ (2)

OR

(b) The fraction for state where vaccination not started in January 2021 is $\frac{1}{7}$ and its decimal form is $0.\overline{142857}$. Find the decimal form of $\frac{6}{7}$. (2)

PRACTICE PAPER 01 CHAPTER 01 NUMBER SYSTEM (ANSWERS)

MAX. MARKS: 40

DURATION : 1¹/₂ hrs

SUBJECT: MATHEMATICS

CLASS : IX

General Instructions:

- (i). All questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

<u>SECTION – A</u> Questions 1 to 10 carry 1 mark each.

- 1. On simplifying $(\sqrt{3} \sqrt{7})^2$, we get (c) $2(5-\sqrt{21})$ (d) $10-\sqrt{21}$ (a) $2 - \sqrt{21}$ (b) $5 - \sqrt{21}$ Ans: (c) $2(5-\sqrt{21})$ $(\sqrt{3} - \sqrt{7})^2 = (\sqrt{3})^2 + (\sqrt{7})^2 - 2 \times \sqrt{3} \times \sqrt{7}$ $=3+7-2\sqrt{21}=10-2\sqrt{21}=2(5-\sqrt{21})$ 2. The value of $\frac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}}$ is equal to (a) $\sqrt{2}$ (b) 2(c) 4 (d) 8Ans: (b) 2 $\frac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}} = \frac{4\sqrt{2} + 4\sqrt{3}}{2\sqrt{2} + 2\sqrt{3}} = \frac{4(\sqrt{2} + \sqrt{3})}{2(\sqrt{2} + \sqrt{3})} = \frac{4}{2} = 2$ \therefore Correct option is (b). 3. The simplified form of $13^{\frac{1}{5}} \div 13^{\frac{1}{3}}$ is (c) $13^{\frac{-1}{15}}$ (d) $13^{\frac{-2}{15}}$ (a) $13^{\frac{2}{15}}$ (b) $13^{\overline{15}}$ Ans: (d) $13^{\frac{-2}{15}}$ $\frac{13^{\frac{1}{5}}}{1} = 13^{\frac{1}{5}} \cdot 13^{-\frac{1}{3}} = 13^{\frac{1}{5}-\frac{1}{3}} = 13^{-\frac{2}{15}}$ \therefore Correct option is (d). 4. On dividing $6\sqrt{27}$ by $2\sqrt{3}$, we get (a) $3\sqrt{9}$ (b) 6 (d) none of these (c) 9Ans: (c) 9 $\frac{6\sqrt{27}}{2\sqrt{3}} = \frac{3 \times 3\sqrt{3}}{\sqrt{3}} = 9$
- 5. The value of $\sqrt{10}$ times $\sqrt{15}$ is equal to

(a) $5\sqrt{6}$ (b) $\sqrt{25}$ (c) $10\sqrt{5}$ (d) $\sqrt{5}$ Ans: (a) $5\sqrt{6}$ $\sqrt{10} \times \sqrt{15} = (\sqrt{2}.\sqrt{5}) \times (\sqrt{3}.\sqrt{5}) = (\sqrt{5} \times \sqrt{5}) (\sqrt{2} \times \sqrt{3}) = 5\sqrt{6}.$

6. Value of $(256)^{0.16} \times (256)^{0.09}$ is (a) 4 (b) 16 (c) 64 (d) 256.25 Ans: (a) 4 $(256)^{0.16} \times (256)^{0.09} = (256)^{0.16 + 0.09} = (256)^{0.25}$ $= (256)^{\frac{25}{100}} = (4^4)^{\frac{1}{4}}$ $= 4^{4 \times \frac{1}{4}} = 4$

:. Correct option is (a).

7.
$$\left(-\frac{1}{27}\right)^{\frac{-2}{3}}$$
 is equal to
(a) $8\left(\frac{1}{27}\right)^{\frac{-2}{3}}$ (b) 9 (c) $\frac{1}{9}$ (d) $27\sqrt{27}$
Ans: (b) 9
 $\left(\frac{-1}{27}\right)^{\frac{-2}{3}} = \left(\frac{-1}{3^3}\right)^{\frac{-2}{3}} = (-1)^{\frac{-2}{3}} \times (3^{-3})^{\frac{-2}{3}}$

9

$$= \{(-1)^2\}^{\overline{3}} \times 3^2 = 1 \times 9 =$$

 \therefore Correct option is (b).

8. Value of $\sqrt[4]{(81)^{-2}}$ is

(a)
$$\frac{1}{9}$$
 (b) $\frac{1}{3}$ (c) 9 (d) $\frac{1}{81}$
Ans: (a) $\frac{1}{9}$
 $\sqrt[4]{(81)^{-2}} = [(9^2)^{-2}]^{\frac{1}{4}} = 9^{-2 \times 2 \times \frac{1}{4}} = 9^{-1} = \frac{1}{9}$

In the following questions 9 and 10, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.

9. Assertion (A): Rational number lying between two rational numbers x and y is $\frac{1}{2}(x+y)$.

Reason (R): There is one rational number lying between any two rational numbers. Ans: (c) Assertion (A) is true but reason (R) is false.

10. Assertion (A): $2 + \sqrt{3}$ is an irrational number.

Reason (**R**): Sum of a rational number and an irrational numbers is always an irrational number. Ans: (a) Both A and R are true and R is the correct explanation of A.

<u>SECTION – B</u> Questions 11 to 14 carry 2 marks each.

11. Find the value of x for which $\left(\frac{3}{4}\right)^6 \times \left(\frac{16}{9}\right)^5 = \left(\frac{4}{3}\right)^{x+2}$. Ans:

Given
$$\left(\frac{3}{4}\right)^6 \times \left(\frac{16}{9}\right)^5 = \left(\frac{4}{3}\right)^{x+2}$$

 $\Rightarrow \left(\frac{4}{3}\right)^{-6} \times \left[\left(\frac{4}{3}\right)^2\right]^5 = \left(\frac{4}{3}\right)^{x+2}$
 $\Rightarrow \left(\frac{4}{3}\right)^{-6} \times \left(\frac{4}{3}\right)^{10} = \left(\frac{4}{3}\right)^{x+2}$
 $\Rightarrow \left(\frac{4}{3}\right)^{10-6} = \left(\frac{4}{3}\right)^{x+2}$
 $\Rightarrow \left(\frac{4}{3}\right)^4 = \left(\frac{4}{3}\right)^{x+2} \Rightarrow 4 = x+2 \Rightarrow x = 2$

12. Simplify $\sqrt[4]{81} - 8(\sqrt[3]{216}) + 15(\sqrt[5]{32}) + \sqrt{225}$. Ans:

$${}^{4}\sqrt{81} = (81)^{\frac{1}{4}} = (3^{4})^{\frac{1}{4}} = 3^{4\times\frac{1}{4}} = 3$$

$${}^{3}\sqrt{216} = (216)^{\frac{1}{3}} = (6^{3})^{\frac{1}{3}} = 6^{3\times\frac{1}{3}} = 6$$

$${}^{5}\sqrt{32} = (32)^{\frac{1}{5}} = (2^{5})^{\frac{1}{5}} = 2^{5\times\frac{1}{5}} = 2$$

$$\sqrt{225} = (225)^{\frac{1}{2}} = (15^{2})^{\frac{1}{2}} = 15^{2\times\frac{1}{2}} = 15$$
Hence, $\sqrt[4]{81} - 8(\sqrt[3]{216}) + 15(\sqrt[5]{32}) + \sqrt{225}$

$$= 3 - 8 \times 6 + 15 \times 2 + 15 = 3 - 48 + 30 + 15 = 48 - 48 = 0$$

13. Simplify $\frac{6-4\sqrt{3}}{6+4\sqrt{3}}$ by rationalising the denominator.

Ans:

$$\frac{6-4\sqrt{3}}{6+4\sqrt{3}} = \left(\frac{6-4\sqrt{3}}{6+4\sqrt{3}}\right) \times \left(\frac{6-4\sqrt{3}}{6-4\sqrt{3}}\right) = \frac{(6-4\sqrt{3})^2}{(6)^2 - (4\sqrt{3})^2}$$
$$= \frac{36-48\sqrt{3}+48}{36-48} \qquad [(a-b)^2 = a^2 - 2ab + b^2]$$
$$= \frac{84-48\sqrt{3}}{-12} = \frac{12(7-4\sqrt{3})}{-12} = 4\sqrt{3} - 7$$

14. Represent $\sqrt{2}$ on the real number line.

Ans: Using Pythagoras theorem, $\sqrt{2} = \sqrt{1^2 + 1^2}$ $\Rightarrow OB = \sqrt{OA^2 + AB^2} = \sqrt{2}$

Hence, take OA = 1 unit on the number line and AB = 1 unit, which is perpendicular to OA. With O as centre and OB as radius, we draw an arc to intersect the number line at P. Then P corresponds to $\sqrt{2}$ on the number line as shown in figure.

SMART ACHIEVERS

Clearly, OP = OB =
$$\sqrt{2}$$

C B
 $\sqrt{2}$
 -3 -2 -1 $\frac{-1}{2}$ 0 1 P 2 3

<u>SECTION – C</u> Questions 15 to 17 carry 3 marks each.

15. Find the value of $\frac{4}{(216)^{-\frac{2}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}}$ Ans: $\frac{4}{(216)^{-\frac{2}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}} = \frac{4}{(6)^{\frac{-2}{3}}} + \frac{1}{(2^8)^{-\frac{3}{4}}} + \frac{2}{(3^5)^{-\frac{1}{5}}}$ $=\frac{4}{6^{-3\times\frac{2}{3}}}+\frac{1}{2^{-8\times\frac{3}{4}}}+\frac{2}{3^{-5\times\frac{1}{5}}}=\frac{4}{6^{-2}}+\frac{1}{2^{-6}}+\frac{2}{3^{-1}}$ $= 4 \times 6^{2} + 2^{6} + 2 \times 3 = 4 \times 36 + 64 + 6$ = 144 + 70 = 214

16. Find the value of a and b, if $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$

Ans:

$$\frac{\sqrt{3}-1}{\sqrt{3}+1} = \left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right) \times \left(\frac{\sqrt{3}-1}{\sqrt{3}-1}\right)$$

$$= \frac{(\sqrt{3}-1)^2}{(\sqrt{3})^2 - 1^2} = \frac{3+1-2\sqrt{3}}{3-1} = \frac{4-2\sqrt{3}}{2} = \frac{2(2-\sqrt{3})}{2} = 2-\sqrt{3}$$

$$\Rightarrow 2-\sqrt{3} = a + b\sqrt{3}$$

Hence, on equating rational and irrational part both sides, we get a = 2, b = -1.

17. Simplify $\frac{4+\sqrt{5}}{4-\sqrt{5}} + \frac{4-\sqrt{5}}{4+\sqrt{5}}$ by using rationalizing the denominator

 $\frac{4+\sqrt{5}}{4-\sqrt{5}} + \frac{4-\sqrt{5}}{4+\sqrt{5}} = \left(\frac{4+\sqrt{5}}{4-\sqrt{5}}\right) \times \left(\frac{4+\sqrt{5}}{4+\sqrt{5}}\right) + \left(\frac{4-\sqrt{5}}{4+\sqrt{5}}\right) \times \left(\frac{4-\sqrt{5}}{4-\sqrt{5}}\right)$ (Rationalising both denominators)

$$=\frac{(4+\sqrt{5})^2}{(4)^2-(\sqrt{5})^2} + \frac{(4-\sqrt{5})^2}{(4)^2-(\sqrt{5})^2} = \frac{16+5+8\sqrt{5}}{16-5} + \frac{16+5-8\sqrt{5}}{16-5}$$
$$=\frac{1}{11}[21+8\sqrt{5}+21-8\sqrt{5}] = \frac{42}{11}$$

<u>SECTION – D</u> Questions 18 carry 5 marks each.

18. Prove that
$$\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5.$$

=

Ans: $\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2}$ $= \left[\frac{1}{3-\sqrt{8}} \times \frac{3+\sqrt{8}}{3+\sqrt{8}}\right] - \left[\frac{1}{\sqrt{8}-\sqrt{7}} \times \frac{\sqrt{8}+\sqrt{7}}{\sqrt{8}+\sqrt{7}}\right] + \left[\frac{1}{\sqrt{7}-\sqrt{6}} \times \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}\right]$ $- \left[\frac{1}{\sqrt{6}-\sqrt{5}} \times \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}\right] + \left[\frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}\right]$ $= \left[\frac{3+\sqrt{8}}{9-8}\right] - \left[\frac{\sqrt{8}+\sqrt{7}}{8-7}\right] + \left[\frac{\sqrt{7}+\sqrt{6}}{7-6}\right] - \left[\frac{\sqrt{6}+\sqrt{5}}{6-5}\right] + \left[\frac{\sqrt{5}+2}{5-4}\right]$ $= [3+\sqrt{8}] - [\sqrt{8}+\sqrt{7}] + [\sqrt{7}+\sqrt{6}] - [\sqrt{6}+\sqrt{5}] + [\sqrt{5}+2]$ $= 3+\sqrt{8}-\sqrt{8}-\sqrt{7}+\sqrt{7}+\sqrt{6}-\sqrt{6}-\sqrt{5}+\sqrt{5}+2 = 5$

<u>SECTION – E (Case Study Based Questions)</u> Questions 19 to 20 carry 4 marks each.

- **19.** Mr. Kumar, a Mathematics teacher explained some key points of unit 1 of class IX to his students. Some are given here.
 - There are infinite rational numbers between any two rational numbers.
 - Rationalisation of a denominator means to change the irrational denominator to rational form.
 - A number is irrational if its decimal form is non-terminating non-recurring

On the basis of these key points, Answer the following questions

- (a) What is the reciprocal of $2 + \sqrt{3}$?
- (b) Find a rational number between $\sqrt{2}$ and $\sqrt{3}$
- (c) Simplify $(\sqrt{3} \sqrt{7})^3$

OR

(c) Express $\frac{4}{7}$ in decimal form and state the kind of decimal expansion. Ans:

(a) Reciprocal of $2 + \sqrt{3}$ is $\frac{1}{2 + \sqrt{3}}$

By Rationalisation,

$$= \frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{2-\sqrt{3}}{(2)^2 - (\sqrt{3})^2} = \frac{2-\sqrt{3}}{4-3} = \frac{2-\sqrt{3}}{1} = 2-\sqrt{3}$$

(b) $\sqrt{2} = 1.414$ and $\sqrt{3} = 1.732$
Ans. = 1.5

5

(c)
$$(\sqrt{3} - \sqrt{7})^3 = (\sqrt{3})^3 - (\sqrt{7})^3 - 3(\sqrt{3})^2 \sqrt{7} + 3(\sqrt{3})(\sqrt{7})^2$$

= $3\sqrt{3} - 7\sqrt{7} - 9\sqrt{7} + 21\sqrt{3}$
= $24\sqrt{3} - 16\sqrt{7}$ OR

(c)
$$\frac{4}{7} = 0.571428571428... = 0.\overline{571428}$$

Therefore, the decimal expansion of the given rational number is non-terminating recurring (repeating).

20. In January 2021, the vaccination drive for COVID -19 started in 7 states of a country. More than 60% of the people were vaccinated in 4 states out of 7 states, In one of the state vaccination drive has not been started due to flood although vaccine dose was supplied to that state in advance. In February 2021, 4 more states were included in this drive and 2 states have got remarkable response from the people and more than 80% of the population got vaccinated there. Using this information answer the following questions:

(a) In January 2021, more than 60% of people were vaccinated in 4 states out of 7 states. Find the decimal representation of $\frac{4}{7}$ (2)

(b) In 2 states out of 11 states, more than 80% of people participated in vaccination drive in two months. Find the decimal form of $\frac{2}{11}$ (2)

OR

(b) The fraction for state where vaccination not started in January 2021 is $\frac{1}{7}$ and its decimal form is $0.\overline{142857}$. Find the decimal form of $\frac{6}{7}$. (2) Ans:

(a) Dividing 4 by 7 as:

$7)4.0000000(0.571428) \\ -35 \\ 50 \\ -49 \\ 10 \\ -7 \\ 30$				
$\frac{-28}{20}$				
<u>-14</u> <u>60</u>				
<u>- 56</u> 40				
Ans. $= 0.\overline{571428}$				
(b) Decimal form of				
$\frac{2}{11} = 0.181818 = 0.\overline{18}$				
11)2.0000000 0.181818				
- 11				
90				
<u>- 88</u> 20				
- 11				
90				
- 88				
20				
- 11				
90				
- 88				
20				
If $\frac{1}{7}$ is $0.\overline{142857}$				
then $\frac{6}{7}$ is				
$6 \times \frac{1}{7} = 0.\overline{857142}$				

....

Ŷ

OR

.....

. . .