

PRACTICE PAPER 13 CHAPTER 10 VECTOR ALGEBRA

SUBJECT: MATHEMATICS MAX. MARKS : 40
CLASS : XII DURATION : 1½ hrs

General Instructions:

- (i). All questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

SECTION - A

Questions 1 to 10 carry 1 mark each.

1.	The position vector of the p	oint wl	nich di	vides the join	of points	with position	vectors	$\vec{2a}$ -	$-3\vec{b}$	and
	$\vec{a} + \vec{b}$ in the ratio 3:1 is									
	→ →	→	→		→	_				

(a)
$$\frac{3\vec{a} - 2\vec{b}}{2}$$
 (b) $\frac{7\vec{a} - 8\vec{b}}{4}$ (c) $\frac{3\vec{a}}{4}$

2. The angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 4, respectively, and $\vec{a}.\vec{b} = 2\sqrt{3}$ is

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{\pi}{2}$ (c) $\frac{5\pi}{2}$

3. The vectors from origin to the points A and B are $\vec{a} = 2\hat{i} - 3\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, respectively, then the area of triangle OAB is

(a) 340 (b)
$$\sqrt{25}$$
 (c) $\frac{1}{2}\sqrt{229}$ (d) $\sqrt{229}$

4. If $|\vec{a}| = 10$, $|\vec{b}| = 2$ and $|\vec{a}\vec{b}| = 12$, then value of $|\vec{a} \times \vec{b}|$ is

(a) 5

(b) 10

(c) 14

(d) 16

5. The value of λ for which the two vectors $3\hat{i} - 6\hat{j} + \hat{k}$ and $2\hat{i} - 4\hat{j} + \lambda\hat{k}$ are parallel is

(a)
$$\frac{3}{2}$$
 (b) $\frac{2}{3}$ (c) $\frac{5}{2}$ (d) $\frac{2}{5}$

6. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 2, |\vec{b}| = 3, |\vec{c}| = 5$ then value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$ is

(a) 0 (b) 1 (c) -19 (d) 38

7. The area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$ is

b = 2i - ij + k is (a) 15 (b) $15\sqrt{3}$ (c) $15\sqrt{2}$ (d) None of these

8. Area of a rectangle having vertices A, B, C and D with position vectors $-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$,

 $\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$ and $-\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$, respectively is (a) 1/2 (b) 1 (c) 2 (d) 4

In the following questions 9 and 10, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

(a) Both Assertion (A) and Reason (R) are true and Reason(R) is the correct explanation of assertion (A).

- (b) Both Assertion (A) and Reason (R) are true but Reason(R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- **9.** Assertion (A): If means $\vec{a} = 3\hat{i} 4\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} 3\hat{j} + p\hat{k}$ are mutually perpendicular then p is

Reason (R): For perpendicular vectors, $\vec{a} \cdot \vec{b} = 0$

10. Assertion (A): If two vectors are inclined at an angle, so that their resultant is also a unit vector, then $\sin \theta$ is $\frac{\sqrt{3}}{2}$.

Reason (R): If two vectors are inclined at an angle, so that their resultant is also a unit vector, then $\sin \theta$ is 1/2.

$\frac{\underline{SECTION} - \underline{B}}{\text{Questions 11 to 14 carry 2 marks each.}}$

- **11.** If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a} + \vec{b}| = 13$ and $|\vec{a}| = 5$ find the value of $|\vec{b}|$.
- 12. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + \vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b} .
- 13. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{i} \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.
- 14. Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1) as its vertices.

$\frac{SECTION - C}{\text{Questions 15 to 17 carry 3 marks each.}}$

- **15.** Find a unit vector perpendicular to each of the vectors $\vec{a} + 2\vec{b}$ and $2\vec{a} + \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.
- **16.** If $\vec{a} = \hat{i} \hat{j} + 7\hat{k}$ and $\vec{b} = 5\hat{i} \hat{j} + \lambda\hat{k}$, then find the value of λ , so that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular vectors.
- 17. Show that the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ and $3\hat{i} 4\hat{j} 4\hat{k}$ form the vertices of a right angled triangle.

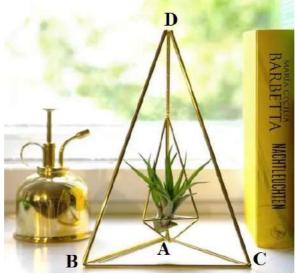
$\frac{\underline{SECTION} - \underline{D}}{\text{Questions 18 carry 5 marks.}}$

18. If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

SECTION – E (Case Study Based Questions)

Questions 19 to 20 carry 4 marks each.

19. Case-Study 1: Read the following passage and answer the questions given below. Aditi purchased an air plant holder which is in the shape of a tetrahedron. Let A, B, C and D are the coordinates of the air plant holder where A = (1, 1, 1), B = (2, 1, 3), C = (3, 2, 2) and D = (3, 3, 4).



Based on the above information, answer the following questions.

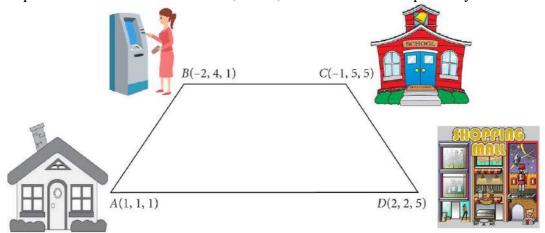
- (i) Find the position vector \overrightarrow{AB} . (1)
- (ii) Find the position vector \overrightarrow{AC} . (1)
- (iii) Find the unit vector along \overrightarrow{AD} vector. (2)

OR

(iii) Find the area of $\triangle ABC$). (2)

20. Case-Study 2: Read the following passage and answer the questions given below.

Ritika starts walking from his house to shopping mall. Instead of going to the mall directly, she first goes to a ATM, from there to her daughter's school and then reaches the mall. In the diagram, A, B, C and D represent the coordinates of House, ATM, School and Mall respectively.



- (i) Find the position vector \overrightarrow{AB} . (1)
- (ii) Find the position vector \overrightarrow{BC} . (1)
- (iii) Find the unit vector along \overrightarrow{AD} vector. (2)

PRACTICE PAPER 13

CHAPTER 10 VECTOR ALGEBRA (ANSWERS)

SUBJECT: MATHEMATICS MAX. MARKS: 40 DURATION: 11/2 hrs **CLASS: XII**

General Instructions:

- **All** questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

$\frac{\underline{SECTION} - A}{\text{Questions 1 to 10 carry 1 mark each.}}$

- 1. The position vector of the point which divides the join of points with position vectors $2\vec{a} 3\vec{b}$ and $\vec{a} + \vec{b}$ in the ratio 3:1 is
 - (a) $\frac{3\vec{a}-2\vec{b}}{2}$
- (b) $\frac{7\vec{a} 8\vec{b}}{4}$ (c) $\frac{3\vec{a}}{4}$
- (d) $\frac{5a}{4}$

Ans. (d) $\frac{5a}{4}$

- **2.** The angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 4, respectively, and $\vec{a}.\vec{b} = 2\sqrt{3}$ is

- (b) $\frac{\pi}{2}$
- (c) $\frac{5\pi}{2}$ (d) $\frac{\pi}{6}$

Ans. (a) $\frac{\pi}{2}$

- **3.** The vectors from origin to the points A and B are $\vec{a} = 2\hat{i} 3\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, respectively, then the area of triangle OAB is
 - (a) 340

- (b) $\sqrt{25}$
- (c) $\frac{1}{2}\sqrt{229}$

Ans. (c) $\frac{1}{2}\sqrt{229}$

- **4.** If $|\vec{a}|=10$, $|\vec{b}|=2$ and $\vec{a}.\vec{b}=12$, then value of $|\vec{a}\times\vec{b}|$ is
 - (a) 5

- (b) 10
- (c) 14
- (d) 16

Ans. (d) 16

- **5.** The value of λ for which the two vectors $3\hat{i} 6\hat{j} + \hat{k}$ and $2\hat{i} 4\hat{j} + \lambda\hat{k}$ are parallel is
 - (a) $\frac{3}{2}$

- (b) $\frac{2}{3}$ (c) $\frac{5}{2}$ (d) $\frac{2}{5}$

Ans. (b) $\frac{2}{3}$

- **6.** If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 2, |\vec{b}| = 3, |\vec{c}| = 5$ then value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + c.a$ is
 - (a) 0

- (b) 1
- (c) 19
- (d) 38

Ans. (c) - 19

- 7. The area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{i} \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} 7\hat{j} + \hat{k}$ is
 - (a) 15

- (b) $15\sqrt{3}$
- (c) $15\sqrt{2}$

(d) None of these

Ans. (c) $15\sqrt{2}$

- **8.** Area of a rectangle having vertices A, B, C and D with position vectors $-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$,
 - $\hat{i} \frac{1}{2}\hat{j} + 4\hat{k}$ and $-\hat{i} \frac{1}{2}\hat{j} + 4\hat{k}$, respectively is
 - (a) 1/2

- (b) 1
- (c) 2
- (d) 4

Ans. (c) 2

In the following questions 9 and 10, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both Assertion (A) and Reason (R) are true and Reason(R) is the correct explanation of assertion (A).
- (b) Both Assertion (A) and Reason (R) are true but Reason(R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- **9.** Assertion (A): If means $\vec{a} = 3\hat{i} 4\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} 3\hat{j} + p\hat{k}$ are mutually perpendicular then p is -9.

Reason (R): For perpendicular vectors, $\vec{a} \cdot \vec{b} = 0$

Ans. (a) Both Assertion (A) and Reason (R) are true and Reason(R) is the correct explanation of assertion (A).

10. Assertion (A): If two vectors are inclined at an angle, so that their resultant is also a unit vector, then $\sin \theta$ is $\frac{\sqrt{3}}{2}$.

Reason (**R**): If two vectors are inclined at an angle, so that their resultant is also a unit vector, then $\sin \theta$ is 1/2.

Ans. (c) Assertion (A) is true but reason (R) is false.

SECTION - B

Questions 11 to 14 carry 2 marks each.

11. If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a} + \vec{b}| = 13$ and $|\vec{a}| = 5$ find the value of $|\vec{b}|$.

Ans: Given $|\vec{a} + \vec{b}| = 13$

$$|\vec{a} + \vec{b}|^2 = 169 \Rightarrow (\vec{a} + \vec{b}).(\vec{a} + \vec{b}) = 169$$

$$\Rightarrow |\vec{a}|^2 + 2\vec{a}\cdot\vec{b} + |\vec{b}|^2 = 169$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 = 169 \qquad \left[\because \vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b} = 0 \right]$$

$$\Rightarrow |\vec{b}|^2 = 169 - |\vec{a}|^2 = 169 - 25 = 144$$

$$\Rightarrow \mid \vec{b} \mid = 12$$

12. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + \vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b}

Ans: Given that $\vec{a} + \vec{b}$ is also a unit vector

$$\therefore |\vec{a} + \vec{b}| = 1$$

$$|\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b}).(\vec{a} + \vec{b})$$

$$\Rightarrow |\vec{a}|^2 + 2\vec{a}\cdot\vec{b} + |\vec{b}|^2 = 1^2 = 1$$

$$\Rightarrow 1 + 2\vec{a}.\vec{b} + 1 = 1 \qquad \left[\because |\vec{a}| = 1, |\vec{b}| = 1 \right]$$

$$\Rightarrow 2\vec{a}.\vec{b} = -1 \Rightarrow \vec{a}.\vec{b} = -\frac{1}{2} \Rightarrow |\vec{a}| |\vec{b}| \cos \theta = -\frac{1}{2}$$

$$\Rightarrow 1 \times 1 \times \cos \theta = -\frac{1}{2} \Rightarrow \cos \theta = -\frac{1}{2} \Rightarrow \cos \theta = \cos \frac{2\pi}{3}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

13. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.

Ans: Adjacent sides of parallelogram are given by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.

Now,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = 20\hat{i} + 5\hat{j} - 5\hat{k}$$

$$\Rightarrow |\vec{a} \times \vec{b}| = \sqrt{400 + 25 + 25} = \sqrt{450} = 15\sqrt{2}$$

Hence, the area of the given parallelogram is $15\sqrt{2}$ sq. units.

14. Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1) as its vertices.

Ans: We have $\overrightarrow{AB} = \hat{j} + 2\hat{k}$ and $\overrightarrow{AC} = \hat{i} + 2\hat{j}$.

The area of the given triangle is $\frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |$

Now,
$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{vmatrix} = -4\hat{i} + 2\hat{j} - \hat{k}$$

Therefore,
$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{16+4+1} = \sqrt{21}$$

Thus, the required area is $\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{21}$

 $\frac{SECTION - C}{\text{Questions 15 to 17 carry 3 marks each.}}$

15. Find a unit vector perpendicular to each of the vectors $\vec{a} + 2\vec{b}$ and $2\vec{a} + \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Ans. Given that
$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

$$\vec{a} + 2\vec{b} = 3\hat{i} + 2\hat{j} + 2\hat{k} + 2(\hat{i} + 2\hat{j} - 2\hat{k})$$

$$=3\hat{i}+2\hat{j}+2\hat{k}+2\hat{i}+4\hat{j}-4\hat{k}=5\hat{i}+6\hat{j}-2\hat{k}$$

and
$$2\vec{a} + \vec{b} = 2(3\hat{i} + 2\hat{j} + 2\hat{k}) + \hat{i} + 2\hat{j} - 2\hat{k}$$

$$=6\hat{i}+4\hat{j}+4\hat{k}+\hat{i}+2\hat{j}-2\hat{k}=7\hat{i}+6\hat{j}+2\hat{k}$$

Now, perpendicular vector of $\vec{a} + 2\vec{b}$ and $2\vec{a} + \vec{b}$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & 6 & -2 \\ 7 & 6 & 2 \end{vmatrix} = (12+12)\hat{i} - (10+14)\hat{j} + (30-42)\hat{k}$$

$$=24\hat{i}-24\hat{j}-12\hat{k}=12(2\hat{i}-2\hat{j}-\hat{k})$$

$$\therefore \text{ Required unit vector} = \pm \frac{12(2\hat{i} - 2\hat{j} - \hat{k})}{12\sqrt{4 + 4 + 1}} = \pm \frac{2\hat{i} - 2\hat{j} - \hat{k}}{\sqrt{9}}$$

$$= \pm \frac{2\hat{i} - 2\hat{j} - \hat{k}}{3} = \pm \left(\frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} - \frac{1}{3}\hat{k}\right)$$

16. If $\vec{a} = \hat{i} - \hat{j} + 7\hat{k}$ and $\vec{b} = 5\hat{i} - \hat{j} + \lambda\hat{k}$, then find the value of λ , so that $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular vectors.

Ans: Given that $\vec{a} = \hat{i} - \hat{j} + 7\hat{k}$ and $\vec{b} = 5\hat{i} - \hat{j} + \lambda\hat{k}$

$$\vec{a} + \vec{b} = \hat{i} - \hat{j} + 7\hat{k} + 5\hat{i} - \hat{j} + \lambda\hat{k} = 6\hat{i} - 2\hat{j} + (7 + \lambda)\hat{k}$$

and
$$\vec{a} - \vec{b} = \hat{i} - \hat{j} + 7\hat{k} - 5\hat{i} + \hat{j} - \lambda\hat{k} = -4\hat{i} + (7 - \lambda)\hat{k}$$

Now, $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular vectors

$$\Rightarrow (\vec{a} + \vec{b}).(\vec{a} - \vec{b}) = 0$$

$$\Rightarrow (6\hat{i} - 2\hat{j} + (7 + \lambda)\hat{k}).(-4\hat{i} + (7 - \lambda)\hat{k} = 0$$

$$\Rightarrow$$
 $-24 + 0 + (7 + \lambda)(7 - \lambda) = 0$

$$\Rightarrow$$
 -24 + 49 - λ^2 = 0 \Rightarrow λ^2 = 25 \Rightarrow λ = ±5

17. Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ form the vertices of a right angled

Ans: Let $A = 2\hat{i} - \hat{i} + \hat{k}$ $B = \hat{i} - 3\hat{i} - 5\hat{k}$ and $C = 3\hat{i} - 4\hat{i} - 4\hat{k}$

$$\overrightarrow{AB} = (\hat{i} - 3\hat{j} - 5\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) = -\hat{i} - 2\hat{j} - 6\hat{k}$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{1+4+36} = \sqrt{41}$$

$$\overrightarrow{BC} = (3\hat{i} - 4\hat{j} - 4\hat{k}) - (\hat{i} - 3\hat{j} - 5\hat{k}) = 2\hat{i} - \hat{j} + \hat{k}$$

$$\Rightarrow |\overrightarrow{BC}| = \sqrt{4+1+1} = \sqrt{6}$$

and
$$\overrightarrow{AC} = (3\hat{i} - 4\hat{j} - 4\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) = \hat{i} - 3\hat{j} - 5\hat{k}$$

$$\Rightarrow |\overrightarrow{AC}| = \sqrt{1+9+25} = \sqrt{35}$$

$$\therefore |\overrightarrow{AB}|^2 = |\overrightarrow{AC}|^2 + |\overrightarrow{BC}|^2$$

Hence, ABC is a right angled triangle.

 $\frac{\underline{SECTION} - \underline{D}}{\text{Questions 18 carry 5 marks.}}$

18. If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

Ans: Given that \vec{a} , \vec{b} and \vec{c} are mutually perpendicular vectors.

$$\vec{a} \cdot \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$$

It is also given that $|\vec{a}| = |\vec{b}| = |\vec{c}|$

Let vector $\vec{a} + \vec{b} + \vec{c}$ be inclined to \vec{a} , \vec{b} and \vec{c} at angles α , β and γ respectively.

$$\cos \alpha = \frac{(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{a}}{|\vec{a} + \vec{b} + \vec{c}| |\vec{a}|} = \frac{\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a}}{|\vec{a} + \vec{b} + \vec{c}| |\vec{a}|} = \frac{|\vec{a}|^2 + 0 + 0}{|\vec{a} + \vec{b} + \vec{c}| |\vec{a}|}$$

$$= \frac{|\vec{a}|^2}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|} = \frac{|\vec{a}|}{|\vec{a} + \vec{b} + \vec{c}|}$$

$$\cos \beta = \frac{(\vec{a} + \vec{b} + \vec{c})\vec{b}}{|\vec{a} + \vec{b} + \vec{c}||\vec{b}|} = \frac{\vec{a}\vec{b} + \vec{b}\vec{b} + \vec{c}\vec{b}}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|} = \frac{0 + |\vec{b}|^2 + 0}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|}$$

$$= \frac{|\vec{b}|^2}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|} = \frac{|\vec{b}|}{|\vec{a} + \vec{b} + \vec{c}|}$$

$$\cos \gamma = \frac{(\vec{a} + \vec{b} + \vec{c})\vec{c}}{|\vec{a} + \vec{b} + \vec{c}||\vec{c}|} = \frac{\vec{a}\vec{c} + \vec{b}\vec{c} + \vec{c}\vec{c}}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|} = \frac{0 + 0 + |\vec{c}|^2}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|}$$

$$= \frac{|\vec{c}|^2}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|} = \frac{|\vec{c}|}{|\vec{a} + \vec{b} + \vec{c}|}$$

Now as $|\vec{a}| = |\vec{b}| = |\vec{c}|$, therefore, $\cos \alpha = \cos \beta = \cos \beta$

$$\therefore \alpha = \beta = \gamma$$

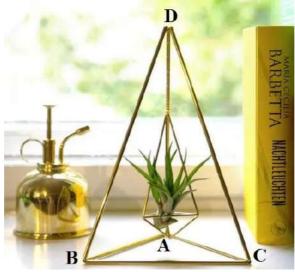
Hence, the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

<u>SECTION – E (Case Study Based Questions)</u>

Questions 19 to 20 carry 4 marks each.

19. Case-Study 1: Read the following passage and answer the questions given below.

Aditi purchased an air plant holder which is in the shape of a tetrahedron. Let A, B, C and D are the coordinates of the air plant holder where A = (1, 1, 1), B = (2, 1, 3), C = (3, 2, 2) and D = (3, 3, 4).



Based on the above information, answer the following questions.

- (i) Find the position vector \overrightarrow{AB} . (1)
- (ii) Find the position vector \overrightarrow{AC} . (1)
- (iii) Find the unit vector along \overrightarrow{AD} vector. (2)

OR

(iii) Find the area of $\triangle ABC$). (2)

Ans. (i) Position vector
$$\overrightarrow{AB}$$

$$= (2-1)\hat{i} + (1-1)\hat{j} + (3-1)\hat{k} = \hat{i} + 2\hat{k}$$

(ii) Position vector \overrightarrow{AC}

$$= (3-1)\hat{i} + (2-1)\hat{j} + (2-1)\hat{k} = 2\hat{i} + \hat{j} + \hat{k}$$

(iii) Unit vector along
$$\overrightarrow{AD} = \frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$$

$$=\frac{2\hat{i}+2\hat{j}+3k}{\sqrt{2^2+2^2+3^2}}=\frac{2\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{4+4+9}}=\frac{1}{\sqrt{17}}(2\hat{i}+2\hat{j}+3\hat{k})$$

OR

(iii) Area of
$$\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$$

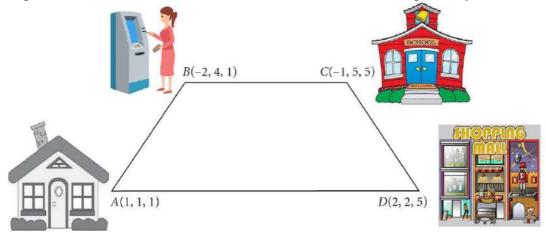
$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 2 \\ 2 & 1 & 1 \end{vmatrix} = \hat{i}(0-2) - \hat{j}(1-4) + \hat{k}(1-0)$$

$$= -2\hat{i} + 3\hat{j} + \hat{k}$$

$$\Rightarrow |\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-2)^2 + 3^2 + 1^2} = \sqrt{4+9+1} = \sqrt{14}$$

20. Case-Study 2: Read the following passage and answer the questions given below.

Ritika starts walking from his house to shopping mall. Instead of going to the mall directly, she first goes to a ATM, from there to her daughter's school and then reaches the mall. In the diagram, A, B, C and D represent the coordinates of House, ATM, School and Mall respectively.



- (i) Find the position vector \overrightarrow{AB} . (1)
- (ii) Find the position vector \overrightarrow{BC} . (1)
- (iii) Find the unit vector along \overrightarrow{AD} vector. (2)

Ans. (i) Position vector \overrightarrow{AB}

$$= (-2-1)\hat{i} + (4-1)\hat{j} + (1-1)\hat{k} = -3\hat{i} + 3\hat{j}$$

(ii) Position vector \overrightarrow{BC}

$$= (-1+2)\hat{i} + (5-4)\hat{j} + (5-1)\hat{k} = \hat{i} + \hat{j} + 4\hat{k}$$

(iii) Unit vector along $\overrightarrow{AD} = \frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$

$$=\frac{\hat{i}+\hat{j}+4\hat{k}}{\sqrt{1^2+1^2+4^2}}=\frac{\hat{i}+\hat{j}+4\hat{k}}{\sqrt{1+1+16}}=\frac{1}{\sqrt{18}}(\hat{i}+\hat{j}+4\hat{k})=\frac{1}{3\sqrt{2}}(\hat{i}+\hat{j}+4\hat{k})$$